
COMPUTER GENERATED HOLOGRAPHY

Sponsored Professor: William Ames

Canh Ngoc Cao

2

I. INTRODUCTION

Three-dimensional (3D) displays have been used and applied widely in computer

3

II. INVESTIGATE APPROACH

A common approach is a ray-tracing method in which the contribution from each

object point source is computed at each point in the hologram plane. This method requires

one calculation per image point per hologram sample, so it is very slow. One of my goals in

this project is to optimize the algorithm for the improvement of speed. I have discussed with

Professor William Ames about my thesis, and we decide to focus on the computation of off-

axis transmission holograms.

III. INVESTIGATE EQUIPMENTS ON CAMPUS

The hologram must be produced at very high resolution because it is not a recording of

a focused image as in photography, but the recording of the interference of laser light waves

that are bouncing off the object with another coherent laser beam. This is also true for the

computer generated holographic images. A computer-generated hologram will be stored in a

tiff format file. This tiff file then will be printed on film at high resolution. The two places

on campus that can provide us with such equipment are the Interactive Multi-media Lab

4

Also, we need to assemble some equipment (laser, lenses, etc) for displaying the

holograms that we produced. The equipment can be bought or the physics department can let

us have access to their laboratory.

IV. GENERATE HOLOGRAM

Finally, my main goal for this thesis is to generate the actual holograms on computer.

I will implement the computation of off-axis method and the ray-tracing approach. The

program, that I implemented, is capable of generating holograms of points, lines and

5

Figure 1

From the general geometry for making the point hologram, we can derive a mathematical

6

The distance from object d1, and reference beam d2 and the distance from the reference

source to the object d3 can be computed with a simple C function. We can represent the

position of the reference beam and the position of the object in three-dimensional coordinate

(X,Y,Z). The coordinates of the image plane are also known therefore the calculation of d1,

d2, and d3 can be done with the following formula:

Since the magnitude of the wavelength is also known, I wrote a C++ function that computes

the phase:

float point::phase(point3d imagepixel, point3d Refbeam, float WaveLength)
{
// Point is the coordinate of the object

7

The phase function will be called at each pixel of the image plane. The following point-

hologram is produced by the above function:

Notes: The below picture is cropped from the actual hologram because the actual dimension

of the point hologram is 4096x2730 which is quite large.

A point hologram

8

2. Line Hologram

The general geometry for line hologram is similar to the geometry of point hologram:

Figure 2

We now can examine the numerical computation of a line holographic pattern, beginning with

the simple physics of point-source light propagation. We consider the position of the

hologram at the z = 0 plane, and the hologram plane contains horizontal x-axis and vertical y-

axis. Every point of the object, i.e. the line, emits light from position (xp, yp

,

9

Where t = 1/Numpoints, and Numpoints is the number of points between the two given end

points that virtually form a line.

The distance from the points on the object to the hologram d2, and the distance of the

reference beam d1 and the distance from the object to the reference source d3 can be

computed similar to the point hologram. The computational algorithm of the phase for the

line hologram differs from the point hologram’s. At each pixel on the hologram, we also need

to compute all the points (X,Y,Z) that make up the actual line. Since the wavelength is a

constant, we can form an equation that represents the phase of light:

Phase of light = Cos((d2 + d3 – d1)/Wavelength)

10

 // This loop will calculate all the points that made up the line
 // the number of points must be given, we choose 100 points
 for (t = 0.0f; t <= 1.0f; t+=tincrement) {

 // compute the all the points that made up the line
 float x = point1.x + t*(pdx);
 float y = point1.y + t*(pdy);
 float z = point1.z + t*(pdz);

 // the distance from the line to the image plane
 dx=x-imagepixel.x;
 dy=y-imagepixel.y;
 dz=z-imagepixel.z;
 distance = sqrtf(dx*dx + dy*dy + dz*dz);

 // distance from the line to the reference source
 dx=x-Refbeam.x;
 dy=y-Refbeam.y;
 dz=z-Refbeam.z;
 float distance2 = sqrtf(dx*dx + dy*dy + dz*dz);

 // the phase of light of the line is the average sum of all the phases of points

 sum += cosf((distance+distance2-refdist)/WaveLength);
 }

 return sum;
}

12

Figure 3: Viewing Computer Generated Hologram

4. Holograms are stored in TIFF format

At the beginning of the thesis, I produced a Computer Generated Hologram by

emitting the hologram’s pixels into a PGM (Portable Graymap) file format. Since I wrote my

program on the Computer Science machine of Boston College, I was able to examine the

outcome of the hologram with XV. However, the process used to produce the results, that can

be viewed in three-dimensions, was to photograph the masks using a 35mm camera and slide

film. The slides are illuminated with a laser to produce the projected hologram. The

equipment, that can accomplish such task at Boston College’s Interactive Media Lab, requires

the file format to be in uncompressed TIFF file format. I discussed with Professor Ames, and

we decided to write our own TIFF library based on the TIFF 6.0 Specification. The TIFF

13

library, that we wrote, will store uncompressed images. Due to nature of our TIFF library, the

size of the Computer Generated Hologram is quite large. A line hologram with resolution of

4096x2730 occupies about 10 Megabytes of hard drive spaces.

5. Optimization

The running time of each Computer Generated Hologram is different depending on the

resolution of the image. In fact, the running time is proportional to the image width and

height. For example: the running time for a hologram of 4096x2730 will be proportional to

the product of 4096 times 2730. We observed the running time of both the point hologram

and line hologram programs, and we noticed that the line hologram program had the most

running time. We examined the codes and found out that since the phase function of the line

14

2

222

 ++
+

=
D

zyxD
D Using this algorithm, we are able to reduce the running time of the

line hologram program to 30%. The following line hologram is produced with our new

square-root algorithm:

15

We also investigated in writing our own cosine function that uses the technique for iterative

approximation. We got the negative result because Profession Howard Straubing pointed out

that eventually the approximating cosine values would diverge throughout the loop. After

failing the first attempt to modify the cosine function, I tried to apply the Mclaurin series to

compute the cosine function. The formula is:

....
!10!8!6!4!2

1)(
108642

+−+−+−=
xxxxxxCos

This method also failed to improve the speed of the program if I used more than 10

polynomial terms. When I used fewer polynomial terms the approximating cosine value is

not accurate enough.

IV. CONCLUSTION

Computer Generated Holograms are still at the beginning stage, and so much more can

be done. My thesis can be improved in future if I can create a Computer Generated Hologram

using an OpenGL library. The advantage of OpenGL is that it is possible to read the Z-buffer

of an image. Using the Z-buffer values, it is also possible to compute the dimensions and

depth cues of the image, thus more realistic holograms can be produced.

The applications of Computer Generated Holograms are many. Once the technology

for producing interactive holograms can be done in real time, we can watch television in

three-dimensional view. Teachers can enhance their lectures by showing an interactive

hologram of any object and model. For this reason I felt that Computer Generated Hologram

can be viewed as an effective teaching tool.

16

V. ACKNOWLEDGEMENT

My thesis has involved much time spent on researching the topic of Computer

Generated Hologram and implementing computer program. I greatly appreciate the time and

effort that my sponsored professor, William Ames, spent to make the final result possible. I

have learned a great deal from my thesis. I also would like to thank Professor Howard

Straubing for pointing out the problem of the approximating cosine function. Finally, I thank

17

Bibliography:

1. TIFF 6.0 Specification Coverage by Sam Leffler / sam@engr.sgi.com

2. Optimization of Hologram Computation for Real-Time Display
By Mark Lucente, MIT Media Laboratory published in SPIE, Bellingham, WA, Feb. 1992

3. Optical Information Processing and Holography
By W. Thomas Cathey, University of Colorado, Denver, Colorado

4. CRC Standard Mathematical Tables 25th Edition
By William H. Beyer, Ph.D

