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1 Introductiont



Consider an image that is 47.4KB large. For each byte, there are 256 possible 

values so the input space for an image viewer accepting only images of this exact 
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Initially, for this project, I looked at two separate fuzzers that were fre



the amount of a program’s input space that can be fuzzed in a given amount of 

time, the fuzzer is both distributed and multiprocessing, but for distributed 

fuzzing runs to work, port forwarding must be activated in the network settings 

of the server virtual machine (using the guest and host ip’s respectie栀
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2.2 FuzzServer.py and FuzzClient.py 

When run on the server machine, FuzzServer.py first reads in th



FuzzerConfig.txt file. Otherwise, the parameters are passed in as arguments 

when the Fuzzer process is created by a FuzzClient process as part of a 

distributed run. The Fuzzer process creates one Mutator process and the number 

of Executor processes specified by the fuzzing parameters. It passes to each child 

process a process/thread safe Queue to convey mutated file names from the 

Mutator to the Executor processes as well as a similarly synchronized Queue for 

the names of old mutated files that need to be removed. The Fuzzer process then 

sits in a loop checking if any of the Executors have died. If this is the case, the
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randomized write location between beginning and the end of the file and writes 

a byte value between 0 and 255 to that location in the list. These random writes 

to the list ar





must be c



 

3 Fuz



http://samples.mplayerhq.hu/


Another file seed file was separately found to cause crashes without any 

mutations prior to the initial fuz
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severely the second round (as it passed all input checks in the first round). 

 

The graph of Hits vs. Fuzz Percentage above indicates that as the mutation 

percentage increases, the number of known crashers that pass crash (and thus 

pass input checks) declines. However, that decline is not particularly steep, and 

appears even to flatten out as the mutation percentage approaches 20%. Even as 

we are fuzzing less files, the average percentage of mutated bytes in files being 

executed and passing input checks is in







research done on seed selection 



3.3.3 Timeout 

 

The timeout parameter sets how long the Executor process will wait before 

killing an executing target process. There is virtually no previous research done 

on this setting because it is unique to the target application and environment for 

the fuzzing run; the slower the computer or the larger the application, the longer 

it takes for each execution, and thus the longer the timeout must be to 

accommodate the extra startup time. Furthermore, the type of files affects the 

amount 
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3.3.4 Number of Executor Processes 

This is probably the easiest parameter to figure out. The short and obvious 

answer is: as many as possible. The data in the graph below is clear and expected: 

there are very good returns for introducing a little bit of parallelism, bu
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4. Conclusions and Further Work 

The fuzzing run on VLC yielded a lot of important information. First and 

foremost, at least ten unique crashes, one of which appears to be highly 

ex



http://www.rarewares.org/aac-decoders.php
http://www.rarewares.org/aac-decoders.php
http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://en.wikipedia.org/wiki/Libavcodec
http://en.wikipedia.org/wiki/Libavcodec
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;


Appendix A: Comparison of Mutator 
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Appendix B: Source Code 
 
# FuzzClient.py 

# Dylan Wolff 5/8/15 

# FuzzClient immediately makes a co



cl



s = reply.split('|') 

 

#receive a file of length specified by s[1] 

guy = recFile(clientSocket, int(s[1])) 

#send acknowledge 

clientSocket.send("sup") 
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expected 

# number of bytes 

 

#first send across the size of the file so the client knows how much to expect 

targetSocket.recv(3) 
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#figure out the appropriate number of sample flies to send over 

samplesSent = 0 

if remainder > 0: 

extra = 1 

remainder = remainder - 1 

else: 

extra = 0 

 

#send them over 

while samplesSent < samplesPerClient + extra: 

sendFile(samples[0], connectionSocket) 

samples.remove(samples[0]) 

samplesSent = samplesSent + 1 

 

#send the finished sending files me



#while we haven't received files from all of the clients 

 

os.makedirs(path + '/servCrashers/' + directory) 

#make a directory for our first expected crash folder 

 

clientsReported = clientsReported + 1 

#tally the client for reporting in 

connectionSocket, addrs = serverSocket.accept() 

#accept the connection 

 

#receive files until we get the done snding files token 

while True: 

print "waiting to receive" 

reply = '' 

while len(reply) != 4096: 

reply = reply + connectionSocket.recv(4096-len(reply)) 

 

if reply == 4096*'a': 

#if we get the end of folder token, then we create a



print "All Clients Finished Fuzzing" 

 

def fuzzReport(p



 

if __name__ == '__main__': 

 

#Get parameters for fuzzing run 

path = '/Users/Fuzzer/Desktop/' 

 

 

 

f = open(path + 'Fuzz

=



 

 fuzzReport(path, iterations) 

 

 

# Fuzzer.py 

# Dylan Wolff 5/8/15 

# Fuzzer.py launches Mutator and Executor processes, monitors them in case they die, and, at the end 

#   a fuzzing run, either sends the crashes back to the server, or does a cursory analysis itself, 

#   depending on whether the run was distributed or not 

 

from winappdbg import Debug, HexDump, win32, Thread, Crash 

from socket import * 

import os, uuid, shutil, Executor, pickle, Mutator, time, Fuzzer, ctypes, multiprocessing 

  

 

class Fuzzer(): 

 

    def __init__(self, resume, timeout, fuzzFactor, program, iterations, numExecs, serverPort, serverIP, p







        print "Finished fuzzing run" 

 

        #delete any remaining mutated files 

        fails = 0 

        for i in range(qn.qsize()): 

            try: 

                s = qn.get(False) 

            except:  

                continue 

            try: 

                os.remove(path + 'Mutated/' + s) 

            except: 

                fails = fails + 1 

        print "unable to delete ", fails, " mutated file



           



                files =  os.listdir(path + 'Crashers/' + crash) 

 

                for f in files: 

                    #for each file in crash folder, send it across 

                    self.sendFile(path + 'Crashers/' + crash, f, clientSocket) 

  

  

                #4096 a's is the end of a crash fo



        process = multiprocessing.Process(target=Fuzzer.Fuzzer, args=((response != 'n'), timeout, fuzzFact



 

                #poison pill 

                if obj == "STOP": 

                    self.queue_in.put("STOP") 

                    fileout = open(self.path + "State/" + str(self.my_pid), 'w') 

                    fileout.tru



                    self.filename = params[0] 

 

            print "Executing ", self.filename 

            #run the file 

            x = [self.program_name, self.path + "Mutated/" + self.filename] 

            self.simple_debugger(x) 

 

            #then log as done 

            fileout = open(self.path + "State/" + str(self.my_pid), 'w+') 

            fileout.truncate() 

            fileout.write(self.filename + " | " + self.mutator_specs + " | " + str(True)) 

            fileout.close() 

 

            #try to remove the old mutated file 

            try: 

                os.remove(self.path + "Mutated/" + self.filename) 

            except: 

                #if we can't because of a zombie executing process, put in on a queue for later 

                self.qn.put(self.filename) 

                try: 

                    #serialize qn and add to a 
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    def my_event_handler(self, event ): 

      



  

 

  

 

            crash = Crash(event) 

            crash.fetch_extra_data(event, takeMemorySnapshot = 2) 

 

            #Log the crash in a new unique crash folder in the Crashers directory 

            folder = str(uuid.uuid4()) 

            os.makedirs(self.path + '/Crashers/' + folder) 

            f = open(self.path + '/Crashers/' + folder + '/crashlog.txt', 'w') 

            f.write(crash.fullReport(bShowNotes = True)) 

            f.close() 

            f = open(self.path + '/Crashers/' + folder + '/crashsrc.txt', 'w') 

            f.write(self.mutator_specs) 

            f.close() 

  

  

 

  

    def simple_debugger(self, argv ): 

        # This function creates a Debug object and executes the target program and file unde









 

# 

# Next Resume mutating files from where the Mutator left off 

#  

samples = os.listdir(self.path + "Samples") 

samples.sort(key = l



 

filesize = os.path.getsize(path + "Samples/" + filename + ext) 

#get the filesize 

 

numwrites = int(math.ceil(fuzzFactor * filesize)) 

#get the number of writes to do (size/factor) 

 

 

for i in range(start, iterations): 

 

shutil.copy2(path + "Samples/" + filename + ext, path + "Mutated/" + filename + str(i) + 
ext) 

#copy the sample into the new folder with a new name 

fileout = open(path+ "Mutated/" + filename + str(i) + ext, 'r+b') 

#open the+



totalsize = 0 

currentMutes = os.listdir(path + "Mutated") 

 

for f in currentMutes: 

totalsize = totalsize + os.path.getsize(path + "Mutated/" + f) 

 

return totalsize 

 

 

def mutate(self, path, fullfilename, fuzzFactor, start, iterations): 

# This function mutates files quickly, but uses a lot of memory



if filesize > 110000000: 

print "Extreme

搣茖怀



random.seed(randSeed) #seed the thing soᔀ



 

 

# Dylan Wolff 

# 5/8/15 

# reMutate.py is a script that reads in any number crashsrc.txt file from the remutateFolder on 

# the desktop and recreates the mutated file according to specifications within. The original 

# the original sample files need to be placed in the Sampln

Ȁ

 



randloc = random.randrange(filesize) 

new[randloc] = chr(rbyte) 

 

#write to the new file in the Mutated directory 

fileout = open(path + "Mutated/" + str(j) + samplename, 'w+b') 

fileout.write("".join(new)) 

fileout.close 
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