

Mutational Fuzzing to Discover
Software Bugs and Vulnerabilities

Dylan Wolff

Advised by Robert Signorile
2015 Senior Honors Thesis

Boston College Computer Science Department

Abstract:

Recent major vu

Contents:

1 Introduction 3

1.1 What is Fuzzing? 3

1.2 Why Fuzzing?

5

2 Fuzzer Structure

6

2.1 Virtual Machine and Environment

6

2.2 FuzzServer.py and FuzzClient.py

7

2.4 Fuzzer.py

8

2.5 Mutator.py

9

2.6 Executor.py

11

2.7 reMutate.py 12

3 Fuzzing VLC

12

3.1 Why VLC?

12

2

3.2 Crash Results

14

3.3 Optimizing Fuzzing Parameters for Future Fuzzing Runs

15

3.3.1 Mutation Percentage

16

3.3.2 Number of Iterations and Seed Selection

18

3.3.3 Timeout

20

3.3.4 Number of Execue3m.ࣥ

ces

204on

lsns aaesse n

ss23s5
nces

s24s33R3pmn o

1 Introductiont

Consider an image that is 47.4KB large. For each byte, there are 256 possible

values so the input space for an image viewer accepting only images of this exact

ss

T☀

T⌀s

T☀

TT☀

T☀sT☀TTTT☀T☀T Ц

u

4

n

t

T

☐

x

T

n

n

n

a

T

y

r

T

☀

T

☀

u

i

e

T

e

Initially, for this project, I looked at two separate fuzzers that were fre

the amount of a program’s input space that can be fuzzed in a given amount of

time, the fuzzer is both distributed and multiprocessing, but for distributed

fuzzing runs to work, port forwarding must be activated in the network settings

of the server virtual machine (using the guest and host ip’s respectie栀

t

� h

o态怀x	

	

xx	

	

��

	

2.2 FuzzServer.py and FuzzClient.py

When run on the server machine, FuzzServer.py first reads in th

FuzzerConfig.txt file. Otherwise, the parameters are passed in as arguments

when the Fuzzer process is created by a FuzzClient process as part of a

distributed run. The Fuzzer process creates one Mutator process and the number

of Executor processes specified by the fuzzing parameters. It passes to each child

process a process/thread safe Queue to convey mutated file names from the

Mutator to the Executor processes as well as a similarly synchronized Queue for

the names of old mutated files that need to be removed. The Fuzzer process then

sits in a loop checking if any of the Executors have died. If this is the case, the

 t䄉ᘀ

es

฀

ฆ�ฐsศiฆ ̈ࠊ ..

ȕ

uฆ࠾ .

ฆ ࠊ ̈ .. ȕ ࠾ sฆs฀e

ซs

c ซศ ฆ ss ฆsc ค

ซ ศ

ฅ

s คo฀ฆ˦ ฃ

ttcฐ

ฆz s

d

B/ ฐ�Ď

s 戀tttttttttttt

tttt

ttt
ttttt

ttt t ttttt ttt

/t /

 z

 z

 z

tz/z

z

z

 z zt

 ztz

t

 z

/

t t

/

t

z

tz

t

 z t

z

t

tz

 ttt᠘脒t

t ?怐 ̙䘡฀ቹ⌀㥶ተ䌈ፇ㍥疆ខ㐀㢔㈹め㐀s฀ሀᘗ栁ᝳ☀瘳犁㈈ᎂ㤒瞙؈ᎂ癗䤗邁䄀

S㙂蜈ᑒsᔆ嘃ᤈᒇt

randomized write location between beginning and the end of the file and writes

a byte value between 0 and 255 to that location in the list. These random writes

to the list ar

must be c

3 Fuz

http://samples.mplayerhq.hu/

Another file seed file was separately found to cause crashes without any

mutations prior to the initial fuz

u

n

 leli l

i

h

s

s

a ll y

 i

e rai
sstfa nih a

ar

l

l

l

s

y

if

fer
e

i fio

l

ala
i

 on

l

s

 irion l

severely the second round (as it passed all input checks in the first round).

The graph of Hits vs. Fuzz Percentage above indicates that as the mutation

percentage increases, the number of known crashers that pass crash (and thus

pass input checks) declines. However, that decline is not particularly steep, and

appears even to flatten out as the mutation percentage approaches 20%. Even as

we are fuzzing less files, the average percentage of mutated bytes in files being

executed and passing input checks is in

research done on seed selection

3.3.3 Timeout

The timeout parameter sets how long the Executor process will wait before

killing an executing target process. There is virtually no previous research done

on this setting because it is unique to the target application and environment for

the fuzzing run; the slower the computer or the larger the application, the longer

it takes for each execution, and thus the longer the timeout must be to

accommodate the extra startup time. Furthermore, the type of files affects the

amount

oa

ကaЀ���� �　

�Ȁ�

Ȁ

�褐ࠇ

�8瀀Ȁ

a

a

Ѐ

܀�

̰

蔀

6

ँ

쀀

”

ᘀ

e

!

E㄀

Ъ

႑

怖

�



H

٠ ᘀ

ȀЀ�؀YYЀ ,, YЀ

3.3.4 Number of Executor Processes

This is probably the easiest parameter to figure out. The short and obvious

answer is: as many as possible. The data in the graph below is clear and expected:

there are very good returns for introducing a little bit of parallelism, bu

t t

te

r

e

u

aaa

a

aa

a

a

aa

a

a u

aaa

aa

aaa

aa

a

aaaaata

a a aaaaa

aaaa aaaaaa

a

a

a

aaaaaaaaaaaaaa

aa

a

aa

a

aa

a

aaa

aa

aaaaaaaaaaaaaasᰀ aaaĀy

nᔀaa at
a

uuaea

w

e

��

eaܧ倀e aaxgaa aܧ剔堀asaafaas� Pof

P

a

a

o

s

v

e

a

a

a

℀

a

ր

a

蘰

က

a

t

ᤀ

d

a

舀

a

t

a

a

a

f

t

s

ր

4. Conclusions and Further Work

The fuzzing run on VLC yielded a lot of important information. First and

foremost, at least ten unique crashes, one of which appears to be highly

ex

http://www.rarewares.org/aac-decoders.php
http://www.rarewares.org/aac-decoders.php
http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://en.wikipedia.org/wiki/Libavcodec
http://en.wikipedia.org/wiki/Libavcodec
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;

Appendix A: Comparison of Mutator
Function Performance

 €� Ž�

��

28

29

Appendix B: Source Code

FuzzClient.py

Dylan Wolff 5/8/15

FuzzClient immediately makes a co

cl

s = reply.split('|')

#receive a file of length specified by s[1]

guy = recFile(clientSocket, int(s[1]))

#send acknowledge

clientSocket.send("sup")

 s r e gt㔀t e䘰� r c l]� fࠀã ᔀ ␀g⤀gg儀gs g p退 鐀k��k�℀n � x昐fpn(p䘳ᖈt夀tfff礀S ᜀts⤀Wg䔀 9搀sg) 9搀

e䤀�T舀ês(䜀 Tcen

t

v

p

r

蜀

 sT挀x戰
�

a

s

H
x

[
g

夀

,s
g蠀

��F
k

t

�

�

k

A

-挀Y甀A

v
s

6

 Te--q

e

e退�.̀
s

q

怀

r

f

ê

g

ᤀ

s

g

 uᑨ钀✡e挀!椀ess蘀s鐀áaЀ()

 e!

!

e

7

) eᘀ

s

)

expected

number of bytes

#first send across the size of the file so the client knows how much to expect

targetSocket.recv(3)

#ack after every send t� 偠eyn end �lgd enl � � e ekt s keef ek eafyg s ayk e dea skya ks

�

�

awgetaocketaret e 3 e9

�

aFk amwìì cáet á áaet ágzìt áwk oâ e eá

awgetaocketargt kx3)

3e

#

#

#tf䅄㔁耀t

e

x

ga xgeC

=

:t

áá ká è ãê t iá á ê k ã ááká êe

t

kìr xã

a

Kàãgre eãgài � i 6a6 ruxài h :i \ã 6iÕ sthw3 hr uxãi h= sÕ s6 \ ãa Ki� � sK rntãy :s\ ê 6sÕs t ey3gi� �K rc

h

cj=sÕs 6\ êaDru mcgs

 e u F r e Káee á áÕáá e u áÕ

#figure out the appropriate number of sample flies to send over

samplesSent = 0

if remainder > 0:

extra = 1

remainder = remainder - 1

else:

extra = 0

#send them over

while samplesSent < samplesPerClient + extra:

sendFile(samples[0], connectionSocket)

samples.remove(samples[0])

samplesSent = samplesSent + 1

#send the finished sending files me

#while we haven't received files from all of the clients

os.makedirs(path + '/servCrashers/' + directory)

#make a directory for our first expected crash folder

clientsReported = clientsReported + 1

#tally the client for reporting in

connectionSocket, addrs = serverSocket.accept()

#accept the connection

#receive files until we get the done snding files token

while True:

print "waiting to receive"

reply = ''

while len(reply) != 4096:

reply = reply + connectionSocket.recv(4096-len(reply))

if reply == 4096*'a':

#if we get the end of folder token, then we create a

print "All Clients Finished Fuzzing"

def fuzzReport(p

if __name__ == '__main__':

#Get parameters for fuzzing run

path = '/Users/Fuzzer/Desktop/'

f = open(path + 'Fuzz

=

 fuzzReport(path, iterations)

Fuzzer.py

Dylan Wolff 5/8/15

Fuzzer.py launches Mutator and Executor processes, monitors them in case they die, and, at the end

a fuzzing run, either sends the crashes back to the server, or does a cursory analysis itself,

depending on whether the run was distributed or not

from winappdbg import Debug, HexDump, win32, Thread, Crash

from socket import *

import os, uuid, shutil, Executor, pickle, Mutator, time, Fuzzer, ctypes, multiprocessing

class Fuzzer():

 def __init__(self, resume, timeout, fuzzFactor, program, iterations, numExecs, serverPort, serverIP, p

 print "Finished fuzzing run"

 #delete any remaining mutated files

 fails = 0

 for i in range(qn.qsize()):

 try:

 s = qn.get(False)

 except:

 continue

 try:

 os.remove(path + 'Mutated/' + s)

 except:

 fails = fails + 1

 print "unable to delete ", fails, " mutated file

 files = os.listdir(path + 'Crashers/' + crash)

 for f in files:

 #for each file in crash folder, send it across

 self.sendFile(path + 'Crashers/' + crash, f, clientSocket)

 #4096 a's is the end of a crash fo

 process = multiprocessing.Process(target=Fuzzer.Fuzzer, args=((response != 'n'), timeout, fuzzFact

 #poison pill

 if obj == "STOP":

 self.queue_in.put("STOP")

 fileout = open(self.path + "State/" + str(self.my_pid), 'w')

 fileout.tru

 self.filename = params[0]

 print "Executing ", self.filename

 #run the file

 x = [self.program_name, self.path + "Mutated/" + self.filename]

 self.simple_debugger(x)

 #then log as done

 fileout = open(self.path + "State/" + str(self.my_pid), 'w+')

 fileout.truncate()

 fileout.write(self.filename + " | " + self.mutator_specs + " | " + str(True))

 fileout.close()

 #try to remove the old mutated file

 try:

 os.remove(self.path + "Mutated/" + self.filename)

 except:

 #if we can't because of a zombie executing process, put in on a queue for later

 self.qn.put(self.filename)

 try:

 #serialize qn and add to a

v฀	退_�

֐

Ё쀀

r

頧

������

 def my_event_handler(self, event):

 crash = Crash(event)

 crash.fetch_extra_data(event, takeMemorySnapshot = 2)

 #Log the crash in a new unique crash folder in the Crashers directory

 folder = str(uuid.uuid4())

 os.makedirs(self.path + '/Crashers/' + folder)

 f = open(self.path + '/Crashers/' + folder + '/crashlog.txt', 'w')

 f.write(crash.fullReport(bShowNotes = True))

 f.close()

 f = open(self.path + '/Crashers/' + folder + '/crashsrc.txt', 'w')

 f.write(self.mutator_specs)

 f.close()

 def simple_debugger(self, argv):

 # This function creates a Debug object and executes the target program and file unde

Next Resume mutating files from where the Mutator left off

samples = os.listdir(self.path + "Samples")

samples.sort(key = l

filesize = os.path.getsize(path + "Samples/" + filename + ext)

#get the filesize

numwrites = int(math.ceil(fuzzFactor * filesize))

#get the number of writes to do (size/factor)

for i in range(start, iterations):

shutil.copy2(path + "Samples/" + filename + ext, path + "Mutated/" + filename + str(i) +
ext)

#copy the sample into the new folder with a new name

fileout = open(path+ "Mutated/" + filename + str(i) + ext, 'r+b')

#open the+

totalsize = 0

currentMutes = os.listdir(path + "Mutated")

for f in currentMutes:

totalsize = totalsize + os.path.getsize(path + "Mutated/" + f)

return totalsize

def mutate(self, path, fullfilename, fuzzFactor, start, iterations):

This function mutates files quickly, but uses a lot of memory

if filesize > 110000000:

print "Extreme

搣茖怀

random.seed(randSeed) #seed the thing soᔀ

Dylan Wolff

5/8/15

reMutate.py is a script that reads in any number crashsrc.txt file from the remutateFolder on

the desktop and recreates the mutated file according to specifications within. The original

the original sample files need to be placed in the Sampln

Ȁ

randloc = random.randrange(filesize)

new[randloc] = chr(rbyte)

#write to the new file in the Mutated directory

fileout = open(path + "Mutated/" + str(j) + samplename, 'w+b')

fileout.write("".join(new))

fileout.close

58

