
Primality Testing and Sub-Exponential
Factorization

David Emerson

Advisor: Howard Straubing

Boston College Computer Science Senior Thesis

May, 2009

Abstract

This paper discusses the problems of primality testing and large number

factorization. The first section is dedicated to a discussion of primality test-

ing algorithms and their importance in real world applications. Over the

course of the discussion the structure of the primality algorithms are devel-

oped rigorously and demonstrated with examples. This section culminates

in the presentation and proof of the modern deterministic polynomial-time

Agrawal-Kayal-Saxena algorithm for deciding whether a given n is prime.

The second section is dedicated to the process of factorization of large com-

posite numbers. While primality and factorization are mathematically tied

in principle they are very di⇥erent computationally. This fact is explored and

current high powered factorization methods and the mathematical structures

on which they are built are examined.

worse, the unsolved problem of how to securely transmit the key to a remote

party exposed the system to vulnerabilities. If the key was intercepted then

the messages sent thereafter would no longer be secure. There was no way

to protect the key transmission because in order to encrypt anything both

parties needed to confer first. The modern public key system is responsible

for solving this problem and maintaining the security of messages passed be-

tween two or more persons. The basic principles of the public key system,

also known as asymmetric encryption, were conceived independently in 1976

by Di⇧e and Hellman of Stanford University and by Merkle at the University

of California. See [Di⇧e and Hellman 1976].

In the new crypto-system, the encryption and decryption keys are unique

and therefore do not need to be traded before messages can be sent. The

method is called a public key system because while it has two unique encryp-

tion and decryption keys one of them is made public. Which key is made

public depends on the type of message passing that one would like to do.

The first application of the system is a way to have people send you encoded

messages. If this is the goal then you publish the encryption key for people

to encode their messages with and you keep the decryption key yourself. In

this way you will be able to receive encoded messages that no one else can

read but you. The second application of the key system is to turn around

the first concept to obtain a ”signature”. That is, if we publish the decryp-

tion key but keep the encryption key secret we will be able to send messages

stamped with our, hopefully, unique encryption signature. As an example,

say that you are trying to send a message to a bank. You know who you

would like to send the message to so you publish the decryption key and give

it to them. Thereafter when the bank receives messages from someone they

believe is you it will attempt to decrypt the message with the key that you

gave them. If the message makes sense then it must have been encrypted

with your unique key and therefore the bank can ”safely” assume that you

created the order. While the second method allows messages you send to be

read by anyone, it allows you to have sole control over what content is put

out under your name. In this way you obtain a unique signature with which

to sign your messages.

When it was first conceived, it was believed that the public key crypto-

system would completely outdate the old symmetric key systems. However,

in today’s encryption most algorithms still use the symmetric key system

for their encryption. The public key crypto-system is too slow for most

exchanges. What the public key crypto system is most often responsible

for is the transmission of the symmetric key to the remote party. This key

system solved the largest problem for the symmetric system, transmission of

the shared key.

2

The scheme that is most widely recognized is by Rivest, Shamir, and

Adleman. It was developed at MIT in 1977 and is referred to as the RSA

algorithm, see [Rivest Shamir and Adleman 1978]. It is widely used as the

basis for modern encryption. The scheme is based on a theorem of Euler

that will be proven later in this paper.

The algorithm works as follows: Let p and q be distinct large primes

and n = p · q. Assuming we have two integers, d for decryption and e for

encryption such that

d · e ⇧ 1 (mod ⌃(n)). (1)

The symbol ⌃(n) denotes the Euler function of n. That is, the number of

integers less than n that are relatively prime to n. The integers n and e are

published. The primes p, q and integer d are kept secret.

Let M be the message that we would like to encrypt and send. We need

M to be a positive integer less than n and relatively prime to n. If we keep

M less than the p or q used to create n then we will be guaranteed that

(M, n) = 1. However, the sender will not have access to p or q in practice for

We know that M and Ed mod n are both strictly less than n and so they

must be equal.

To choose our e and d all we need to know is ⌃(n

number is even we know that it is not prime. If it is odd we consider the

number and ask ourselves, does 3 go into that number? What about 5? This

process is essentially trial division. We go through a small amount of prime

numbers in our head and ask ourselves it the number in question is divisible

by them. It is easy to see the problem with this sort of method if we would

like to prove primality for any n let alone the large n needed to create our

encryption keys. Trial division is a deterministic algorithm for primality

testing. Unfortunately, it has an extremely ine⇧cient runtime. If we want to

prove that n is prime we must trial divide n by every prime less than
⇡

n. If

none of them divides n then nis prime. As n gets larger so does the number

of primes that we will need to test. Indeed, The Prime Number Theorem

states that

lim
x⇧⌥

⇧(x)

x(x

such as 341 = 11 ·

Divide both sides by our sequences of ri’s and we have

bt ⇧ 1 (mod n)

b⇤(n) ⇧ 1 (mod n).

Theorem 1 is simply the special case where b = 2.

The result of Euler’s more general conditions from Theorem 2 allow us

more flexibility within the base of the congruence. We can now restate our

algorithm with a slightly more general calculation step.

Algorithm 2 (The Pseudoprime Test). Given n and a base b

1. Calculate k = bn�1 mod n
2. if(k is equal to 1)

return prime
else return composite

Composite integers that pass this test for a given base b are called Pseu-
doprimes. An integer like 341 is called a pseudoprime for base 2. While these

integers are very bad for our test, it is encouraging that these kinds of com-

posites are relativley rare. Below 1 million there are only 245 pseudoprimes

as compared to 78498 primes.

Another good result from Euler’s criterion is that it gives us a larger pool

that n divides (bm + 1)(bm � 1). If n is prime it must divide at least one of

these factors. Further, n cannot divide both of them or it would divide their

di⇥erence. So consider (bm + 1)� (bm � 1) = 2. We know that n > 2 then n
cannot divide both. So, if n is prime then n | bm + 1 or n | bm � 1. That is,

either

bm ⇧ �1 (mod n) or bm ⇧ 1 (mod n). (3)

If n is composite there is a good chance that some of its factors divide bm +1

and some bm�1. If this is the case then the factors combined would pass the

pseudoprime test and since (bm + 1)(bm � 1) combines the factors, n would

divide b2m � 1 but would fail to hold Equation (3) from above.

Ex 1. Consider n = 341, so m

Hence we consider the complete factorization of bn�1 where n = 2a · t + 1.

Which is

bn�1 = (bt � 1)(bt + 1)(b2t + 1)(b4t + 1) . . . (b2a�1t + 1). (4)

If n is really prime then it must divide exactly one of these factors. Meaning

if n is prime one and only one of these congruences holds

bt ⇧ 1 or � 1 (mod n) or b2t ⇧ �1 (mod n) . . . etc.

So we can now fully define our Strong Pseudoprime Test.

Algorithm 3 (Strong Pseudo Prime Test). Given n and a base b

1. Write n = 2a · t + 1

2. Reduce bn�1 to its complete expansion as in Equation (4)

3. Test each factor’s individual congruence to determine if n divides exactly
one of these factors

4. If n does divide one of the factors
return prime

else return composite

It is natural wonder if there are composites that will pass the Strong

Pseudoprime test. Unfortunately these composites do exist. We say that

Proof. (�)

If there exists a t ⇣ Z+ such that b ⇧ t2 (mod p) then bm ⇧ t2m ⇧ tp�1

(mod p) since 2m = p� 1. We know that t cannot be divisible by p since if

p | t � pk = t

� (pk)2 = t2

� p2k2 = t2

� p(pk2) = t2

� p | t2

� p (

If n is composite it can be uniquely decomposed into a factorization of prime

powers. That is, n = pa
1 · pb

2 · pc
3 · . . . for some primes pi with associated

a, b, c, . . . ⇣ Z+

that if p is a prime of the form 2m + 1 then either p | bm � 1 or p | bm + 1

but not both). So the statement bm ⇧ �1 (mod p

Proof. g = a · r + c · s and so bg = ba·r+c·s. We see then that

(br)a · (br)c ⇧ 1 (mod p).

Theorem 5. Let n be an odd composite number with at least two distinct
prime factors say p and q. Let m be any integer relatively prime to n such
that m is a quadratic residue modp and is not a quadratic residue modq. n
will fail the Strong pseudoprime test for base m.

Proof. We know that m exists by the Chinese Remainder Theorem that will

be proven later. p and q can be written p = 2a · s + 1 and q = 2b · t + 1 where

a, b ⌥ 1 and s, t

can prove the compositeness of an n if we can find this b. In general, to prove

the primality of an n using only this fact we must go through every base b that

is relatively prime to n and test n against each b. This naive algorithm takes

⌃(n) iterations to pass through each base if n is prime (⌃(p) = p � 1 if p is

prime). So we still have a very slow way of deterministically testing whether

a given n is actually prime. We have a lot of confidence that if a composite

n passes the Strong Pseudoprime test for a large number of bases that it is

probably prime because of how rare they are. So it is possible to only test a

fraction of the bases in the set ⌃(n) and claim with high probability that n is

prime. To test this idea we can examine real data produced by implementing

the Strong Pseudoprime test.

In actual practice an implementation of the pseudoprime test can pro-

duce probable primes extremely quickly without switching bases very often.

Indeed during experimentation a random number generator was used to cre-

ate pairs of large numbers that were multiplied together to produce a list of

composite numbers. The Strong Pseudoprime test was run with a random

prime base that was pulled from a large list of primes. The test was run

for each composite number in our generated list coprime to that prime. If

the prime was not a witness to the compositeness of n, a first order change

of base was recorded. Another prime p was then picked from our list and

those n which were coprime to p and had yet to be proven composite were

tested again. If that number had already been tested and still passed the

test for the current base a second order change of base was recorded. Due

to the already rare nature of Strong Pseudoprimes the necessity of changing

bases to prove compositeness was already very small. Sample sizes of 1000 or

more were often needed to engender even one base switch. As the order of the

base changes increased the tally of numbers needing that many base switches

decreased significantly. It was rare to get even one number that needed 3

This theorem suggests that at least 3
4 of all integers ⇣ [1, n� 1] coprime

to n are witnesses for n. That is, n would fail the strong pseudoprime test

for around 3
4 of all integers relatively prime to n ⇣ [1, n�1]. To see the proof

Hypothesis. The generalized Riemann Hypothesis is one of the million-dollar

millennium problems o⇥ered by the Clay Mathematics Institute and remains,

as of yet, unproven. The Miller-Rabin test expects to prove compositeness

in polynomial time but this time estimate still remains probabilistic since it

is conceivable, if we are unlucky, that we will have to go through the full
1
4⌃(n) + 1 bases to prove compositeness. The Gauss sums primality test is

a fully proved deterministic primality test that runs very close to polyno-

mial time, see [Crandall and Pomernace 2005]. Its time bound estimate is

(ln n)c·ln ln ln n where ln ln ln n is non-polynomial but grows extremely slowly

relative to n. The AKS algorithm surpassed all of its predecessors. To add

to its accomplishment its algorithm and principles are relatively simple when

considered against its achievement. As a quick discussion of notation o(n)

with n being an element of a group G means the order of the element n in

G. Also, f(x) ⇧ g(x) (mod xr � 1, n) means that the remainder of f(x)

synthetically divided by xr � 1 with coe⇧cients reduced modn is congruent

to g(x). The notation lg n denotes the log2 of n. Finally, the notations Z[x]

denotes the integer polynomial ring and F[x] denotes the field of polynomials.

The AKS algorithm,

Algorithm 5. (AKS)
Given n ⌥ 2

1. if n is a square or higher power

return composite

2. Calculate the least r ⇣ Z such that o(n) ⌥ lg2 n in Z⇤
r

If n has a proper factor ⇣ [2,
�

⌃(r) lg n]

return composite

3. For(i ⌃ a ⌃
�

⌃(r) lg n)
If((x + a)n ⌘⇧ xn + a (mod xr � 1, n))

return composite

4. return prime

The theorems and proofs that follow demonstrate the correctness of this

algorithm.

Theorem 7. If n is prime then g(x)n ⇧ g(xn) (mod n)

17

Again we will only be concerned with the simpler equation(8) from above.

It turns out that the converse of this statement is also true. Therefore if

equation(8) holds for any value of a such that gcd(n, a) = 1 then n must

is in G by closure under multiplication.

Further since p >
�

⌃(r) lg n these polynomials are distinct and and

non-zero in Zp[x]. Indeed, they are all non-zero because p is prime and

so Zp[x] is a principal ideal domain. That is, there are no zero divisors

(a, b ⇣ Zp[x] with a ⌘= 0, b ⌘= 0 � a · b ⌘= 0). Since Zp is a principal ideal

domain each of its elements factors uniquely into irreducible elements. So

we will only get repeatedonlywfba, b

Let K K

where (h(x

Since J is closed under multiplication so is J ⌃ since J ⌃’s members are congru-

ence classes of the j0 ⇣ J and congruence is closed under multiplication. Here

we recognize that n/p ⇣ J ⌃ since npk�1 ⇧ n/p (mod pk � 1) and npk�1 ⇣ J
since n, p ⇣ J and J is closed under multiplication. This implies that

npk�1 � n/p = m(pk � 1)

npk � n

p
=

n(pk � 1)

p
= m(pk � 1).

Clearly m is well defined since p |

m

polynomial. Therefore, j1 = j2 which implies

pa1(n/p)b1 = pa
2(n/p)b2

pa1nb1p�b1 = pa1nb2p�b2

nb1�b2 = pa2�a1�b2+b1 .

Since our pairs (a1, b1) and (a2, b2) are distinct we know that b1 ⌘= b2. This

is because if b1 = b2

nb1�b2 = n0 = 1 = pb1�b2�a1+a2 = pa2�a1 . (11)

Equation(11) is equal to 1 if and only if a2�a1 = 0 which means that a2 = a1

If this were true then the pairs would not be distinct. So b1 ⌘= b2. We have,

then, n expressed in terms of p. By unique factorization in Z, n must be a

power of p

Theorem 8 demonstrates that correctness of the AKS algorithm. We first

check that n is not a proper power. If it is, then it is obviously composite.

If not we find our r and check to see if n has a factor over the interval

[2,
�

⌃(r) lg n]. If it does have a factor in this interval then, again, we know

that it is clearly composite because we have found a factor. The last step is

to check the binomial congruences. As discussed, the congruences (x+a)n ⇧
xn + a (mod f(

That is, the product of primes [1, x] exceeds 2x if x ⌥ 31. Consider our

N < 2lg5 n. The product of the prime factors of N are less than or equal to

N . If we choose x = lg5 n, then the product of primes less than or equal

to x exceeds 2lg5 n by the Chebyshev-type estimate. 2lg5 n is strictly greater

than N so this list of primes less than or equal to x in the product contains

non-factor primes of N . Choose r0 to be the least of said primes. Therefore

r0 ⌃ lg5 n if lg5 n ⌥ 31. As long as n ⌥ 4, lg5n ⌥ 31. If n = 3 the least r is 5

since in Z⇤
5

35 = 243 mod 5 = 3

lg2 3 = 2.51211 < 5

5 ⌃ lg5 n = lg5 3 = 10.00218.

The powers test in step 1 of the AKS algorithm can be done very simply

with a kind of binary search approach. This approach involves solving ab �
n = 0 by a simple educated guessing. For example if we are trying to

determine if n is a square. We deal with the equation a2 � n = 0. We first

guess the prime p1 closest to n/2. We plug it in and check to see if it is n. If

it is higher than n, we guess p2 to be the closest prime to p1/2. If it is lower

we guess p2 to be the closest prime to (n � p1)/2. We repeat this until we

find a p value that works or the high and low bounds of our search converge

so that no p exists. This application of binary search is bounded by O(lg n).

We will perform this for k power steps. We know 2k < ak = n. So k < lg n.

So this algorithm to perform step 1 is bounded by O(lg2 n).

Our proof of finding an integer r with order of n in Z⇤
r exceeding lg2 n in

polynomial time shows that step 2. can be done in polynomial time. This

is because r is bounded by lg5 n by Theorem 9 and we need only check the

primes up to
�

⌃(r) lg n as factors of n.

As discussed earlier, the third step is the most crucial. We have done the

first two steps in polynomial time and have set the necessary groundwork

to fit Theorem 8. When discussing the congruence testing earlier we men-

tioned that the expansion of (x + a)n is very expensive and time consuming.

O

+

polynomial mod x3�1 and the coe⇥cients mod 10001. (x+1)4 = (x2+2x+

1)2 = (x4 + 4x3 + 6x2 + 4x + 1) reducing mod x3 � 1 we get, 6x2 + 5x + 5.
Now, (x + 1)8 = (6x2 + 4x + 1)2 and reduce mod x3 � 1. We can continue
this process to obtain the complete expansion under the modulus conditions.

The expansion will never be larger than degree r because of our modulus.

This is why we take the least r to create our monic polynomial, if the size of

r is not too large it greatly reduces the number of terms to be expanded at

each squaring step.

miniscule chance of a false negative in proving compositeness.

3 Factorization

While primality testing is important to the creation of RSA keys, factoriza-

None of these shares a common factor with mi since they are pairwise rela-

tively prime. Moreover, M/mi is divisible by mj for all j ⌘= i. So we have

that

Mi ⇧ 1 (mod mi)

Mj ⇧ 0 (mod mj) for j ⌘= i.

We proceed by forming a. So let a = a1 · M1 + a2 · M2 + . . . + ar · Mr. If we

construct a in said manner it satisfies all of our modulo criteria. Consider

a mod m1 = a1 · M1

M

an odd n⌃ to factor) then every n can be expressed as such. Indeed, consider

n = a · b and x =
(a+b)

2 , y =
(a�b)

2

x2 � y2 =
a2 + 2ab + b2

4
� a2 � 2ab + b2

4

=
a2 � a2 + 4ab + b2 � b2

4

= a · b

= n.

Given an odd integer n, we start with x =
⇡

n� and try increasing y until

x2 � y2 ⌃ n. If x2 � y2 = n, we have our factorization. However, if it

is less than n we reseed x = x + 1 and start increasing y again from 1.

This algorithm can be sped up, avoiding calculating the squares, by initially

setting

r = x2 � y2 � n,

and u = 2x + 1, v = 2y + 1 thereafter. u is the amount r increases as a result

of (x + 1)2 since x2
2 will be equal to x2

1 + 2x1 + 1 = x2
1 + u. Likewise, v is the

amount r decreases as y is augmented (y + 1)2. This avoids costly squaring

in the run-time of the algorithm. Nevertheless, it requires a large number of

loops, depending on n, especially if the factors of n are far away from
⇡

n�.
Either way, we do not perform costly trial division and if n has two large

factors Fermat’s algorithm will outperform trial division.

Kraitchik observed that finding a factor for n using Fermat’s algorithm

could be sped up by attempting to find an x and y such that

x2 ⇧ y2 (mod n).

This pair no longer guarantees a factorization of n, but it does imply that

n | x2 � y2 which further implies that nk = (x� y)(x + y). We have at least

a 50-50 chance that the prime divisors of n are distributed between these

two factors and therefore the gcd(x � y, n) is a non-trivial factor of n. The

other possibility is that all of n’s factors could be in one or the other giving

a gcd(x � y, n) = 1 or n. If we can find a systematic and e⇧cient way to

produce these x, y

We start with a composite number n and denote a non-trivial factor of n
as d. Let f(x) be a small irreducible polynomial over Zn. Starting with an

x0, we create a list of xi’s such that

xi = f(xi�1) (mod n) (12)

Equation(12) is the reason why it is important that f(x) is irreducible over

Zn.

Ex 3. x0 = 3 f(x) = x2 + 1 n = 799

x0 = 3 x5 = 383

x1 = 10 x6 = 473

x2 = 101 x7 = 10

x3 = 614 x8 = 101

x4 = 668 . . .

Let yi = xi mod d. If we choose d = 17, then our sequence of yi’s will be

y0 = 3 y5 = 9

y1 = 10 y6 = 14

y2 = 16 y7 = 10

y3 = 2 y8 = 2

y4 = 5 . . .

We have xi ⇧ f(xi�1) (mod n) and yi ⇧ xi (mod d). This implies that

xi = nk +f(xi�1) for some k. So we can write yi = nk +f(xi�1) (mod d) but

d is a factor of n so yi ⇧ f(

ixdd -27 (e) -354 (a) -354 m .019 41
95
Tf [(W) j ET BT 11.9552 0 0 11.9552 113.4199 290.721 7(i)79 71 T
Bas

(i, j) such that c | j�i will work. So we just need to find the i, j combination

that is within the cycle and are spaced at the cycle length. There are many

ways to approach searching for this pair. The form of choosing pairs (i, j)

and computing the gcd(n, xi � xj

Ex 4. x0 = 3 f(x) = x2

of iterations in a reasonable time. While this constitutes a large number it

is no where near the size needed to break our target numbers of 100 digits

or more. This is also slightly under the estimate in Bressoud’s Factorization

and Primality Testing of 1020. This is most likely due to the fact that the

implemented algorithm does not utilize some of the optimization strategies

like time saving gcd calculations or running out the polynomial generations

before starting cycle testing to get o⇥ the tail more quickly. These suggestions

would, no doubt, increase e⇧ciency especially on larger n. While these time

saving techniques were not employed we were still able to approach the limit

set by Bressoud. This is most likely due to the large jumps in computing

power and memory storage since the algorithm was initially proposed. These

leaps in memory capacity and processing speed have benefitted the Quadratic

Sieve and Multiple Polynomial Quadratic Sieve still more.

Similar results were achieved with the second algorithm suggested by

Pollard. The Pollard p-1 algorithm is similar to the Pollard-Rho algorithm

and shares a similar factoring threshold of about 1010�1020. The correctness

of the algorithm rests on Theorem 1

2p�1 ⇧ 1 (mod p). (13)

We consider our n to be factored. Suppose that n has a prime factor p such

that the primes dividing p � 1 are less than 10000. We will work with the

slightly more restrictive condition that p � 1 | 10000!. If this holds we can

compute

m = 210000! mod n.

very quickly since this constitutes exponentiation mod n. Such exponentia-

tion can be done quickly even though 10000! is a very large number, since

we calculate

(((21)2)3 . . .)10000 mod n,

where we reduce modulo n after each exponentiation calculation. One should

note that p�

Therefore p | m�1. There is a good chance that n does not divide m�1 and

thus t = gcd(m� 1, n) will be a non-trivial divisor of n. 2 is simply a special

case. Referring back to Theorem 2 we see that these calculation should hold

for any base. That is, our observations will hold for b10000! for any b relatively

prime to n.

In actual implementation we have no way of telling how close we need

to get to 10000 before we find our p such that p � 1 divides 10000! and p
divides n. We do not want to compute the full 10000! if we don’t have to for

two reasons. The first is that extra computation and wasted e⇥ort is never

good for an algorithm implementation. Second, if all of n’s factors are picked

up by computing m fully our gcd(m � 1, n) will yield n which is a useless

result in terms of actually splitting n. So we’ve done all of the computation

work without coming up with a useful result. For these reasons it is best to

continually check the gcd(bk! � 1, n) and augment k, up to 10, 000!, between

assessments. If the gcd is 1 then we know that we haven’t picked up our

primes. If it is n then we have picked up all of them and either we must

subtract from k and recalculate the gcds more often or try a di⇥erent base

value for b. As we proved above, if the gcd is anything but 1 or n we have

our non-trivial factor of n.

Algorithm 7 (Pollard P-1). Given n and base b, i = 10

1. Calculate m = bi! mod n
2. Calculate t = gcd(m� 1, n)

3. If(t > 1 and t < n)

return t
else i = i + 10 and repeat from step 1

Like the Pollard-Rho algorithm, the Pollard p-1 algorithm assumes that

n

p � 1 and q � 1 have large factors for just this reason. If these two values

had small integer factors then n can be factored very quickly by the p � 1

algorithm. To form such p and q values we start with a large prime value p1

and q1 such that p = 2p1 + 1 and

Lemma 5. If a, b ⇣ Z and a ⇧ b (mod p) then (a/p) = (b/p).

Lemma 6. If p does not divide a ⇣ Z then (a2/p) = 1

Our next theorem to consider is due to Gauss. It is extremely important

to our goal of an algorithm to very quickly decide whether an integer is a

quadratic residue quickly. It is used to prove Quadratic Reciprocity which

will be defined later.

Theorem 11 (Gauss’ Criterion). Let p be an odd prime and b ⇣ Z+ not
divisible by p. For each positive odd integer 2i � 1 less than p let ri be the
residue of b · (2i� 1) mod p. That is

ri ⇧ b · (2i� 1) (mod p) 0 < ri < p.

Further let t be the number of ri which are even. Then

(b/p) = (�1)t.

The Legendre symbol can be proven out for small numbers like 2 so that

no complex calculations need to be carried out. By investigation it can be

observed that 2 is a quadratic residue mod p when p ⇧ 1 or � 1 (mod 8)

and is not a quadratic residue when p ⇧ 3 or �3 (mod 8). Using Theorem 11

we this fact can easily be proven. This implies the following Lemma.

Lemma 7. If p is an odd prime then

(2/p) = (�1)(p2�1)/8

To see that this formula holds just verify that (p2 � 1)/8 is even if p ⇧
1 or � 1 (mod 8) and odd if p ⇧ 3 or � 3 (mod 8).

We can continue proving these properties for larger and larger numbers

but the Lemma statements become increasingly complex and harder and

harder to prove. What is really needed is a more general property that will

allow for systematic reduction and from which we can use our compilation

of Lemmas to produce an e⇧cient algorithm.

From Lemma 4 we know that computing (n/p) for an odd prime q can

be reduced to finding (pi/q

While this result is nice when combined with our previous theorems and

Lemmas, it is not particularly useful in calculating (n/p) unless we know

the prime factorization of n. If we are going to use the Legendre Symbol in

our factorization algorithms for a composite n we will obviously not have its

prime factorization handy. This problem was resolved by Carl Jacobi with

the Jacobi Symbol.

Definition 2. Let n be a positive integer and m be any positive odd integer
such that

m = p1 · p2 · . . . · pr

where pi are odd primes that can be repeated. The Jacobi Symbol (n/m) is
computed

(n/p) = (n/p1) · (n/p2) · . . . · (n/pr)

where (n/pi) is the Legendre Sybmol

While the Jacobi symbol does not indicate whether n is a quadratic

residue modulo m, it does have two very important implications. The first

is that if m is prime then the Jacobi symbol is exactly the Legendre Sym-

bol. The second important fact is that the Jacobi symbol satisfies the same

computational properties as the Legendre symbol. These properties are

1. (n/m) · (n/m⌃) = (n/(m · m⌃))

2. (n/m) · (n⌃/m) = ((n · n⌃)/m)

3. (n2/m) = 1 = (n/m2), given that (n, m) = 1

4. if n ⇧ n⌃ (mod m), then (n/m) = (n⌃/m)

5. (�1/m) = 1 if m ⇧ 1 (mod 4), = �1 if m ⇧ �1 (mod 4)

6. (2/m) = 1 if m ⇧ 1 or � 1 (mod 8), = �1 if m ⇧ 3 or � 3 (mod 8)

7. (n/m) = (m/n) if n and/or m ⇧ 1 (mod 4), = �(m/n) if n and m ⇧ 3

(mod 4)

What this implies is that aside from pulling out factors of 2 as they arise

Ex 5.

(1003/1151) = �(1151/1003)

= �(148/1003) = �(4/1003) · (37/1003)

= �(37/1003) = �(1003/37)

= �(4/37)

= �1

So we can now build our algorithm.

Algorithm 8 (Calculation of the Jacobi/Legendre symbol).
Given n, m we return (n/m)

1. [Reduction using Lemmas]

n = n mod m;

t = 1;

while(a ⌘= 0){
while(a%2 == 0){

a = a/2;

if(m

numbers of immense size where trial division, Pollard-Rho, Pollard p-1, and

other mid-range factorization approaches become impractical. While the

Quadratic Sieve is extremely powerful and significantly more e⇧cient on

these larger numbers than our other algorithms, it takes almost as much

work to factor numbers of large magnitude as it does to split numbers of

smaller magnitude. As such, the QS algorithm should be used in place of

our earlier algorithms only if they have failed or the number is very large.

To start let’s recall the suggestion that Kraitchik made to improve Fer-

mat’s factoring algorithm. If we could find ”random” integers x and y such

that

x2 ⇧ y2 (mod n),

then we have a good chance that the gcd(n, x�y

tried some small scale trial division to pull out any small factors of n that

may exist. If p divides f(r) then

p | r2 � n � n ⇧ r2 (mod p). (14)

Therefore the Legendre symbol (n/p) must equal +1. So we need only con-

sider those primes for which (n/p) is equal to +1 for our factoring of each

f(r). This set of primes is called our factor base. An f(r) is known as B-

smooth if all of its prime factors are less than or equal to a limit B. If n is

a quadratic residue mod p then there exists a t such that

n ⇧ t2 (mod p).

Therefore by equation(14)

r ⇧ t

1. Build our factor base with primes such that (n/p) = +1 and solve the
congruences

t2 ⇧ n (mod pa), 1 ⌃ a ⌃ 2 log L

log p

2. Perform the sieving procedure recording the v(r) vectors for each f(r) to
find enough f(r

return x
}

2. [Case p ⇧ 1 (mod 8)]
Find a random integer d ⇣ [2, p� 1] with (d/p) = �1

p� 1 = 2s · t, where t is odd
A = at mod p
D = dt mod p
m = 0

for(0 ⌃ i < s){
if((ADm)2s�1�i ⇧ �1 (mod p)) m = m + 2i

}
x = a(t+1)/2 · Dm/2 mod p
return x

This algorithm is an amalgamation of two di⇥erent approaches, see [Crandall and Pomernace 2005]

and [Bressoud 1989]. This algorithm will deterministically and in polynomial

rithm 10.

3, t = 1

5, t = 3

7, t = 1.

Solving n ⇧ t2 (mod pa) we get

t2 ⇧ 799 ⇧ 7 (mod 32), t = 4 t2 ⇧ 799 ⇧ 16 (mod 33), t = 4

t2 ⇧ 799 ⇧ 70 (mod 34), t = 31 t2 ⇧ 799 ⇧ 24 (mod 52), t = 7

t2 ⇧ 799 ⇧ 15 (mod 72), t = 8

The procedure used to find these values is called Hensel lifting and will be

discussed in depth later. The last thing to do is find the first r values con-

gruent to our t’s modulo their corresponding p’s. This process is simple and

very quick. We must also remember that �t is also valid. The r values are

as follows

r = 19 ⇧ 1 (mod 3) r = 32 ⇧ 7 (mod 52)

r = 20 ⇧ �1 (mod 3) r = 18 ⇧ �7 (mod 52)

r = 22 ⇧ 4 (mod 32) r = 18 ⇧ 3 (mod 5)

r = 23 ⇧ �4 (mod 32) r = 22 ⇧ �3 (mod 5)

r = 31 ⇧ 4 (mod 33) r = 22 ⇧ 1 (mod 7)

r = 23 ⇧ �4 (mod 33) r = 20 ⇧ �1 (mod 7).

There is no r is our range ⇧ 8 or � 8 (mod 72).

Now we are ready to begin sieving. We run over each f(r) generated in

our list, starting with the first r ⇧ t (mod p

f(30) = 302 � 799 = 101 = 101

f(31) = 312 � 799 = 162 = 2 · 34

f(32) = 322 � 799 = 225 = 32 · 52

f(33) = 332 � 799 = 290 = 2 · 5 · 29

f(34) = 342 � 799 = 357 = 3 · 7 · 17

f(35) = 352 � 799 = 426 = 2 · 3 · 71

f(36) = 362 � 799 = 497 = 7 · 71

f(37) = 372 � 799 = 570 = 2 · 3 · 5 · 19

f(38) = 382 � 799 = 645 = 3 · 5 · 43.

It should be noted that several values (e.g. f(20) or f(21)) do not completely

factor over the factor base. Our sieving process leaves us with a selection of

7 f(r)’s that are completely factored over our base.

The final step in our process is Gaussian elimination on our v(r) vectors

reduce mod 2. Our selected f(r)’s looks as follows

f(22) = �1 · 32 · 5 · 7 11001

f(23) = ��✓◆� =

in Z2 to find a linear combination of f(r)’s that lead to a perfect square as

follows. Starting with the first column, we locate the first vector with a 1

in that column and eliminate down the column by adding that row in Z2 to

those vectors with a 1 in that column. Now there will be no 1’s in the first

column. This step is repeated for each column until we get a vector with the

non-identity part zeroed out. The identity part of the vector will contain 1’s

in column’s indicating the row from which each f(r), in the perfect square

product, came from in the original matrix. In our example

00000 0000001,

there is a 1 in the 7th column of the identity part of the vector indicating

that it is the 7th f(r) in our list that gave us the perfect square. Continuing

with our example we perform the final step of our algorithm.

322 ⇧ 32 · 52 (mod 799)

(322) ⇧ (15)2 (mod 799)

Performing our 4th step in the QS algorithm we compute

32 mod 799 = 32 and 15 mod 799 = 15

gcd(32� 15, 799) = 17.

17 is a non-trivial factor of 799.

Our implementation of the Quadratic Sieve algorithm was done in java.

The first decision that had to be made was how to determine the size of the

The first step for the algorithm implementation was to establish the con-

stant values needed to begin. From the given input n the value for r = ✓
⇡

n◆
had to be calculated. Because of the magnitude of the numbers being used the

primitive int representation was not su⇧cient. As a result many of the num-

ber values had to be done in the BigInteger java class. As a class BigInteger

does not have a square root function built in. Because of this a static func-

tion was built based on Algorithm 9.2.11 in [Crandall and Pomernace 2005]

to calculate the integer part of a square root. After this calculation and

storing values for B and M the algorithm proceeds to building the factor

base.

The factor base is stored as a Linked List of BigIntegers. Its first two

values are initialized to always be �1 and 2. The subsequent primes are

pulled from a text file list of primes. The current list is one million primes

long but can easily be expanded. The list of primes was generated using

a simple iterative algorithm and the isProbablePrime function provided by

Moreover, we know by our initial calculation that (n�A2) is divisible by p.

So we can write (n� A2) = kp for some k yielding

Bp = kpC mod p2

B = kC mod p.

Finally, we take this solution for B in the range 0, . . . , p�1 to get our answer

for x. Consider an example.

Ex 6. We have 62 = 17 mod 19 and we would like to solve x2 = 17 mod 192.
Using equation(17) from above we have

2 · 6 · 19 · B = �19 mod 361.

The multiplicative inverse of 12 mod 361 can be calculated very quickly using
Euclid’s algorithm. The inverse, C, is �30.

19B = (�19)(�30) mod 361

B = 30 mod 19.

So we take B = 11 and plugging it into our equation for x we see that
x = 11 · 19 + 6 = 215.

If we have a value for A2 = n mod p2

access each member of our factor base. This brings up a concern that must

be addressed before continuing the description of our algorithm. Indexing in

java for its list objects and arrays is done by simple ints. A problem will arise

then if we have more primes in our factor base than can be represented by a

32-bit int scheme. There would be no way to input a proper index into the

get function of java’s linked list if its size exceeded the largest primitive int.

It is not out of the question to believe that for very large n, say 90 digits long,

we may need a factor base of extremely large magnitude. The good news is

that if we use the estimation of B = L(n)1/2

While performing the sieving operation we simultaneously build our factor

vectors. These vectors are another implemented object. They consist of a

primitive int row vector whose first part is the factor base component and

the second is the correct row of the identity matrix for the vector. As primes

are sieved from our list each vector is updated to include the newly sieved

out prime with its corresponding power a. The special cases of �1 and 2 are

handled slightly di⇥erently. If a number is negative then it is made positive

and the �

f(r) values in chunks so as to take advantage of skipping down part of the

list but also saving space.

There are two di⇥erent stopping conditions suggested for the sieving pro-

cess. The first is a complete sieve over the interval of r values. The upside

to this method is that it will give us the maximum number of completely

factorable f(r)’s over [�M, M]. The downside is, we will need to sieve and

run over every r value every time. The second is a time saving approach.

Instead of sieving over the entire interval of r values we instead stop the siev-

ing process when we have found s completely factored f(r)’s where s is equal

the size of our factor base plus one. As discussed earlier, having more f(r)

vectors than factors in the factor base guarantees linear dependence of our

vectors during Gaussian elimination over Z2. Under this termination condi-

tion we are still guaranteed to have at least one perfect square for which to

test the gcd, and we do not necessarily have to sieve over our entire interval

of f(r)’s. These two conditions are a matter of taste and time management.

In our algorithm we opted for the second technique.

The process of Gaussian elimination is handled completely by the Gaus-

sianMatrix class. The process looks very much like the one described in the

QS algorithm discussion. First we check if there is already a zeroed row in

our matrix like our example from above. If there is, we perform our gcd
calculations. If not then we proceed with the elimination steps. We look

through the matrix and find the first row-column pair with a 1 element and

eliminate down with that row by adding (in Z2) it to subsequent vectors

with a one in that column. The elimination row is then removed from the

linked list of vectors and thrown away. We then check if we have created

a zeroed row. In the event of a zeroed row then we check the gcd. If this

calculation yields a factor then we are done. If not, then we remove the

zeroed row and continue to eliminate. This process is repeated until either

we run out of vectors or find a factor. When we find a zeroed row the re-

trieval of our corresponding r values is made simple by our ordered storage

of associated r values in the other linked list. The appended identity vector

will contain the indices of those original rows responsible for combining to

form the perfect square value. To obtain the r values that go with these rows

we need only pull the encoded indices from the identity vector and use them

to extract the r values from our list. So we can now calculate our x and

y values and e⇧ciently check the gcd(x � y, n). Gaussian elimination goes

on grows in two dimensions. This time bound begins to become problematic

and the elimination stage of the Quadratic Sieve begins to bog down. This

problem will be discussed later.

Sieving is the part of the algorithm that generally takes the longest to

run. One of the first Quadratic Sieve implementations was done in 1982

by Gerver at Rutgers, see [Bressoud 1989], on a 47 digit number. Solving

the congruences took seven minutes. The Gaussian elimination took six

minutes. However, the sieving process took about 70 hours of CPU time to

complete. The sieve is where much of the optimization work can be done.

There are a good many ways to improve our own implementation of the

Quadratic Sieve. Indeed, if we were going to attempt to crack a 90 digit

number these improvements would be imperative. If we were to go back and

attempt to improve our runtime e⇧ciency the first place to look would be

the actual division and reduction of the f(r) values. As it stands right now

the algorithm simply performs division on each of the f(r) values in order to

reduce them. We know that the value is completely factorable over the factor

base if we are left with a 1 where the original f(r) value used to be. The

problem with these calculations is that we must perform division on a very

large n. Division is an ine⇧cient algorithm in terms of computational speed.

In order to avoid strict division it is possible to instead store the logarithm

of f(r) to either double or single precision and subtract o⇥ the logarithms of

p. This is very much like division since

log(
x

y
) = log x� log y.

Even though our floating point storage does not maintain exact arithmetic,

and therefore does not maintain this relationship perfectly, we have a good

number of decimal places in either precision. Therefore when the remaining

logarithm stored for a particular f(r) is su⇧ciently close to 0, then that

f(r) is completely factorable. This type of calculation is desirable because

When we are finished sieving we will simply look for values that are close

to this value. There will be su⇧ciently few of these so that trial division

can be done without hurting e⇧ciency to verify that they completely factor

over our factor base. For more on on this optimization modification and the

quantitative estimates of how close to Equation(18)’s value that we need to

get see [Bressoud 1989] and [Silverman 1987]. The Silverman modification

does mean that a few r values for which f(r) completely factors may be

missed but the increase in speed for the sieve compensates for this loss.

In Crandall and Pomerance’s discussion of the quadratic sieve. They

suggest that solving the congruences for and sieving over the higher powers

of the primes in our factor base might be skipped. That is, we would not solve

the congruence t2 ⇧ n (mod pa) for those a greater than 1. The claim is that

these prime powers do not contribute significantly to finding B-smooth f(x)

values [Crandall and Pomernace 2005]. If we were to ignore the calculation

of such prime powers and completely forgo sieving over these numbers then

we could in practice speed up our sieve even more.

At the end of our implementation example we examined very briefly the

run-time estimate of the Gaussian elimination step. As mentioned earlier

we can see a few problems developing with the Gaussian matrices that we

will be working with if the magnitude of n begins to grow very large. The

first problem is that the matrix that we will be eliminating on will also

begin to grow very large. In practice we will be storing a factor matrix

that has dimension A + 1⇤ A where A is the factor base size. This kind of

matrix demands a significant amount of storage. Therefore, as the size of the

matrix gets large so does the awkwardness of systematically manipulating

[Odlyzko 1985]. The methods described in Odlyzko’s paper are founded on

a simple observation used in work with sparse matrices. That is, that if a

matrix is sparser on one end than the other, then it is better to start Gaus-

sian elimination from the more sparse end. Odlyzko suggests arranging the

columns of the matrix so that the columns with the least spareness are on

the left and the most are on the right. The algorithm to perform the sparse

matrix Gaussian elimination is detail in the paper and attempts to reduce

base. The problem is that as x gets farther away from ✓
⇡

n◆ the values for

f(x

we may achieve small f(x) integers. Our conditions on a, b, and c will clearly

depend on our x value interval length. So let the interval length be 2M .

By Equation(19) we can also decide that we will take b so that it satisfies

| b |⌃ 1/2a. So now we know that we will only be considering values of

x ⇣ [�M, M]. It should be noted that this interval is no longer centered

around ✓
⇡

n◆ but rather zero. It is easy to see that the largest absolute value

for f(x) will be reached at the interval endpoints. At these points

af(x) = (a(M) + b)2 � n a2M2 � n so,

f(x) = (a2M2 � n)/a.

The least value for f(x) is at x = 0 which yields

af(x) = (a(0) + b)2 � n �n so,

f(x) = �n/a.

So set the absolute values of these two estimates approximately equal in order

to calculate an approximate a. This gives us the equation

a2M2 � n �n � a2M2 2n � a
⇡

2n/M.

If a satisfies our approximation then the absolute value of f(x) is approxi-

mately bounded by (M/
⇡

2n) since

(a2M2 ��

scarcer. In our new approach we can change polynomials while still keeping

our previously discovered B-smooth f(x) values. We can keep our f(x)’s and

their associated prime factorization vectors because our factor base does not

depend on our polynomial. Thus the B-smooth numbers we discovered for

n is in the range of 50 to 150 digits, choices for B range from about 104 to

107. Sieving is very fast over intervals of this length. The sieve operation is

so fast in fact, that the computational overhead created by having to switch

the generating polynomial would become a burden to our overall e⇧ciency.

This overhead is due, in most part, to what is known as the initialization

problem. Given a, b, c we must determine if p | f(x). More precisely we must

solve

ax2 + 2bx + c ⇧ 0 (mod p),

for each p in our factor base. Then we need to determine the roots, r(p) mod p
and s(p) mod p, to this congruence relation. These roots are analogous to

those first r ⇧ t or � t (mod p) in the QS algorithm. So we solve

t(p)2 ⇧ n (mod p),

assuming that p does not divide a · n. More clearly, we assume that p does

not divide a nor does it divide n. If (ax + b)2 ⇧ n (mod p)

(ax + b)2 � n = pk � p | f(x).

But if t(p)2 ⇧ n (mod p) then

(ax + b) ⇧ t(p) and (�t(p)) (mod p).

So we can solve for x in either case calling the two solutions r(p) and s(p)

ax + b ⇧ t(p) (mod p)

ax ⇧ �b + t(p) (mod p)

x ⇧ (�b + t(p))a�1 (mod p).

But we want the first x so

r(p) = (�b + t(p))a�

Now suppose that we choose a to be composed of the product of 10

di⇥erent primes p. Then we will have 512 = 29 choice for the corresponding b.
Each of these b generates a new and distinct polynomial. Hence we need only

calculate a�1 mod p once and it can be used in the initialization calculation

problems for each of the 512 polynomials. Further, if we generate a from

10 primes in our factor base we can just include them in our factorization

vectors and we need not have a be a square times a B-smooth number.

There are two problems that arise from this discussion of Self Initializa-

tion. If we create a from primes in our factor base we must e⇥ectively take

them out of our sieving step. As we saw earlier when we solve for the roots

of Fp[x] in Equations(20) and (21) we must assume that p does not divide

an. If p | a then our calculations of r(p) and s(p) will fail since

r(p) = (�b + t(p))a�1 mod p,

but a�1 mod p = 0 since a ⇧ 0 (mod p). We see then that r(p) will equal

zero. Clearly this is a problem when performing our sieving. In our java

implementations of the MPQS we merely drop those pi that compose a from

our list and update the factor vectors accordingly.

The second problem that arises in the Self Initialization problem is how

to e⇥ectively generate our a values so that they satisfy a
⇡

2n/M and

are a product of k unique primes from our factor base. In our algorithm

generate the polynomial coe⇧cients it is extremely easy to farm out those

coe⇧cients to subordinate computers to run the Quadratic Sieve up to the

elimination step. Instead of the subordinate computers performing Gaussian

elimination on the completely factorable f(x) values that are found they

simply collect them and send back the B-smooth f(x)’s generated by each

subordinates unique polynomial. Once it sends back its information it imme-

diately receives a new set of coe⇧cients with which to generate a completely

new set of f(x)’s to sieve on. Once the central computer has been given

enough f(x) values to guarantee dependence in the Gaussian elimination

step it will perform the elimination and test the resulting gcd’s to see if we

have found a non-trivial divisor of n. If we have not then the central com-

puter continues to receive and process the incoming f(x) values from the

subordinate machines. If we have found one then it stops all of the clustered

machine processes and reports a successful factorization.

then we clearly cannot factor it. We use the properties of primes to split large

numbers with the Quadratic and Multiple Polynomial Quadratic sieves and

often we naively use trial division and factorization to prove that a number is

prime or composite. While Primality and Factorization are mathematically

interwoven their computational complexities are extremely di⇥erent. As we

have seen the development of primality tests has progressed through the years

and in 2002 the first definitive and fully proven polynomial-time primality

test, the Agrawal-Kayal-Saxena algorithm, was discovered. While primality

testing has been proven to be in P , it is believed that there is no polynomial-

timed algorithm, probabilistic or deterministic, to factor a given composite

n. While the development of factorization algorithms has progressed signif-

icantly it still remains an extremely di⇧cult problem. For large composite

n the time to factor it is still measured in days. While there have been new

innovations in factorization like the Number Field Sieve, the Quadratic Sieve

and Multiple Polynomial Quadratic Sieves still represent some of the most

powerful approaches to large integer factorization. The challenge of fast and

e⇧cient factorization algorithm has, thus far, stood beyond the reach of Com-

puter Science and Numerical Analysis faster factorization algorithms are still

being produced but still we do not expect to find really e⇧cient methods.

References

[Agrawal et al. 2004] M. Agrawal, N. Kayal, and N. Saxena, ”PRIMES is in

P”, Annals of Mathematics, 160 (2004), pages 781-793.

[Bressoud 1989] David M. Bressoud, ”Factorization and Primality Testing”,

New York, Springer-Verlag, 1989.

[Odlyzko 1985] A. Odlyzko, ”Discrete logarithms in finite fields and their

cyptographic significance”, In Advances in Cryptology, Proceedings of
Eurocrypt 84, a Workshop on the Theory and Application of Crypto-
graphic Techniques, pages 224-314, Springer-Verlag, 1985.

[Pomerance and Smith 1992] Carl Pomerance and J. Smith, ”Reduction of

Huge, Sparse Matrices over Finite Fields Via Created Catastrophes”, In

Experimental Mathematics, 1 (1992), pages 89-94.

[Rivest Shamir and Adleman 1978] R. L. Rivest, A. Shamir, and L. Adle-

man, ”A Method for Obtaining Digital Signatures and Public-Key Cryp-

tosystems”, Communications of the ACM, 21 (1978), pages 120-126.

[Saracino 1992] Dan Saracino, ”Abstract Algebra A First Course”, New

York, Waveland Press, 1992.

[Shor 1994] Peter Shor, ”Polynomial-time Algorithms for Prime Factoriza-

tion and Discrete Logarithms on a Quantum Computer, in SIAM Jour-
nal of Computing, 26 (1997), pages 1484-1509.

[Silverman 1987] Robert D. Silverman, ”The Multiple Polynomial Quadratic

Sieve”, in Mathematics of Computation, 48 (1987), pages 329-340.

[Stinson 2006] Douglas R Stinson, ”Cryptography Theory and Practice”,

Boca Raton, Chapman & Hall/CRC, 2006.

[Teitelbaum 1998] J. Teitelbaum, ”Euclid’s Algorithm and the Lanczos

Method over Finite Fields”, In Mathematics of Computation, 67 (1998),

pages 1665-1678.

66

