
distCVS: A Distributed

Peer-to-Peer Versioning File

Storage System

Andrew Logan

May 13, 2005

Advised by:

Professor Robert Signorile
Professor Elizabeth Borowsky

Thanks to:

My family, for always encouraging me to

Contents

1 Abstract 1

2 Introduction 2

3 System Overview 9

4 Implementation 10

5 Testing 15

6 Conclusions and Future Work 18

7 Appendix A: distCVS Source Listings i

8 Appendix B: Test Scripts xxxv

9 Appendix C: Bibliography lii

1 Abstract

The current layout of resources on the internet suffers from the fact that

there is generally a single point of failure for data access. Peer-to-peer ap-

plications promise to change this by distributing resources, and therefore

network routes and load, across the network itself. The problem is that

the development and testing of such a system is often a hard and tedious

chore, especially since the technology is still rapidly evolving. In this pa-

per, I present distCVS, a peer-to-peer system for the storage of versioned

data. distCVS is unique because it is an application built by using the Bam-

boo peer-to-peer networking framework to pass messages for an unmodified

version of the CVS source control

2 Introduction

The basic layout of the internet has changed very little since its inception

in the late 1960’s. In essence, the resources of the internet are laid out in a

star topology. Client computers spread across the internet access resources

contained

Figure

1

:

A

n

8

n

o

d

e

n

e

t

w

o

r

k

la

id

o

u

t

i

n

a

s

t

a

r

t

o

p

o

l

o

g

y

.

t

e

n

d

t

o

w

o

r

k

a

r

o

u

n

d

t

h

e

s

e

p

r

o

b

l

e

m

s

b

y

h

a

v

i

n

g

t

h

e

i

r

r

e

s

o

u

r

c

e

s

s e r v

e

d

b

y

n

e

t

w

o

r

k

s

o

f

m

a

c

h

i

n

e

s

t

h

a

t

are

c

a

p

a

b

l

e

o

f

h

a

n

d

l

i

n

g

t

h

e

e

n

o

r

m

o

u

s

t

r

a

ffi

c

l

o

a

d

s

t

h

a

t

t

h

e

y

e

x

p

e r i

e n c e .

A

m

o

r

e

e

l

e

g

a

n

t

s

o

l u

t i

o

n

i

s

r

e

q

u

i

r

e

d

,

h

o

w

e

v

e

r

,

s

i

n

c

e

t

h

i

s

m

e

t

h

o

d

d

o

e

s

n

o

t

a d d r e

s s

t

h

e

r

o

o

t

c

a

u

s

e

s

o

f

t

h

e

s

c

a

l

a

b

i

l

i

t

y

p

r

o

b

l

e

m

s

.

O

v

e

r

t

h

e

l

a

s

t

f

e

w

y

e

a

r

s

,

m

u

c

hw

o

r

k

h

a

s

b

e

e

n

p

u

t

i

n

t

o

r

e

s

e

a

r

c

h

i

n

g

a

n

d

d

e

v

e

l

o

p

i

n

g

pe

e

r

n

e

t

wo r k

s , [

6

,4

,

8

,

2

,

7

]

w

h

i

c

hbe

c

a

m

e

p

o

p

u

l

a

r

i

n

0

m

9

w

i

t

h

t

h

e

r

e

l

e

a

s

e

a

n

d

s

u

c

c

e

s

s

o

f

t

h

e

N

a

p

s

t

e

r

Þ

l

e

s h a r i

n g

p

r

o

-

g

r

a

m

.

P

e

e

r

s

y

s

t

e

m

s

p

r

o

m

i

s

e

t

r

u

l

y

d

e

c

e

n

t r

a l i z

e d

n

e

t

wo r k

s ,

b

u

t

a

r

e

still

m

a

n

y

p

r

o

b

l

e

m

s

t h

a th

a

v

n

o

t

y

e

t

b

s

o

l

v

e

d

.

e r yc o m -3

puter on a network to every other one on the network. Although this scheme

does provide complete connectivity, it is not practical for several reasons.

First, there is a limit to how many network connections a computer can have

active at one time, which places a relatively small upper bound on the maxi-

mum size of the network.1 This topology was attempted with the first version

of the Gnutella peer-to-peer network, and the designers of that system soon

discovered that the information that needs to be shared to index the data on

this network imposed an enormous amount of networking overhead, which

severely limited the amount of bandwidth that could be used for sharing

data.

The popularity of Napster was partly due to the fact that it solved the

indexing problem by using a central server to keep track of the resources

available on the network.2 Although this is a clever solution to the indexing

problem, the addition of a central server makes this system not truly peer-to-

peer. Therefore, this network still has some of the scalability and reliability

problems that star networks do. This napster topology is better than a

easily recreated. Finally, since Bamboo and CVS are both freely av

v

3 System Overview

The distCVS system allows users to put, get and update files in a peer-

to-peer network, and handles all versioning and concurrency enforcement in

the background. The typical user of the system would provide it with the

name of a project and a file that he or she wanted to work on, make changes

to it, and then resubmit it into the network. If another user had submitted

changes while this copy w

4 Implemen

Figure 5: An illustration of the distCVS file submission process.

implement deletion of old resources, extra steps need to be taken to iter-

ate through every file referenced by a given GUID, to ensure that the most

recently stored copy is retrieved from the primary owner’s database. If no

matching data is found, then the system assumes that the submitted data is

being added for the first time. Otherwise, it is treated as an update.

The retrieved version data (if it e.24 T59seti)] TJ ET BT -0.001 Tc 11.9552 0 0 11.9552 230.77176276.24
Tm /Tc8 1 Tf (it) Tj 0 Tc ET BT 01.9552 0 0 11.9552 242 4124 376.24 Tm /Tc8
1 Tf [(e) 5 (ii) 1 (mte) 4 (d)] TJ ET BT 11.9552 0 0 11.9552 2383.05.9276.24
Tm /Tc8 1 Tf (io) Tj ET BT 10.002 Tc 11.9552 0 0 11.9552 437.6570 276.24 Tm
/Tc8 1 Tf [(d)ne

new version data from the CVS repository and indicates that the process

completed successfully. DistCVSStage then retrieves this file from local stor-

age

there is no way to ensure that any given node has a globally correct piece

of data. Therefore, we were forced to assume that the correct version would

quickly propagate

is

5 Testing

Our tests sought to answer several questions about the behavior of DistCVS.

Specifically, we wanted to see how stable the system was under a high rate

of file requests, or a high rate of nodes joining and dropping from the net-

w

In order to ensure that nodes received the correct copy of the data from

the network, a master copy was kept on a file system shared by all of

the test machines. Whenever a response was returned, it was compared

against this master copy using the Linux diff utility. If the files were identi-

cal, a GOOD VERSION response was

number of nodes total requests %good %bad %not found %unanswered

100

6 Conclusions and Future Work

Due to the modular structure of Bamboo and the way that CVS interacts

with data, distCVS demonstrates that it is possible to build a complex peer-

to-peer system that can be rapidly upgraded to reflect any possible future

advances in the technology. Although distCVS is a working system, there

are still several areas where it could be improved.

distCVS is only a partial implementation of CVS, so although the frame-

w

import bamboo.api . BambooRouteDeliver ;
import bamboo.api . BambooRouteInit ;
import bamboo.api . BambooRouterAppRegReq ;
import bamboo.api . Ba

//////////

this .filesize = filedata .length ;
System .out . println (" PutCVSReqPayload : constructor ");
debug_disp_file (this .filename , this . projectname , t

// Sent to primary owner to initiate retrieval of data from the
// storage net

//I keep track of the length here since I get an underflow
// error if I try to take more data fre

/

System .out . println (line);
}

command = "./ storehelper .pl ";
resultingFilename = initialFilename + ",v";

Process proc = runtime .exec (command + initialFilename + " > storehelperoutput ");

// check for failure
if(proc . waitFor () != 0){

Syst

y/

t

a

ys

t

ty s

t

/

a

a

y

s

a

a

y

s

a a

a

y

/

a

a

y

s

a

y

sS

System .out . println (" DistCVSStage : got BambooRouterAppRegResp ");

BambooRouterAppRegResp resp = R

classifier . dispatch_later (new BambooRouteInit (info .src , app_id , false , false ,
new StatusPayload (" Initializing database - your request will be processed shortly ")), 0);

}
}

// WarmupCompletedAlar

debug_disp_file (info . filename +", v", info .projectname , version_filedata);

//I don ’t need this , since I can just append it to the reconstructed data .
// version file
// write_file (info . filename + "_version ", info .projectname , version_header);

//, v file
write_file (info . filename + ",v", info .projectname , version_filedata);

Runtime runtime = Runtime .getRuntime ();

// does the requisite CVS commands

String command = "./ reconstructhelper .pl ";

Process proc = runtime . exec (command + info . filename + ",v" + " >
helperoutput ");

// check for failure
if(proc . waitFor () != 0){

System.err . println (" reconstructhelper exit value = " +
proc . exitValue ());

// TODO : write new exception that passes error code .
throw new InterruptedException ();

}

// So far so good . Read the newly reconstructed file off of the disk .
byte
.
b

b
b

c

lT m / T 4 .y

*/
else if(elem .user_data instanceof PutCVSReqInfoContainer){

PutCVSReqInfoContainer info = (PutCVSReqInfoC

debug_disp_file (info . filename +", v_version ", info . projectname ,
new_version_header);

debug_disp_file (info . filename +", v", info . projectname , new_version_data);
debug_disp_file (info . filename +", v", info . projectname ,

submitted_version_filedata);

// Place the version data into

// Strip out the header that ’s included in info . filedata
byte [] master_version_hea

debug_disp_file (pay . filename + " _version ", pay . projectname ,
pay . version_filedata);

tr

// done !
fos .close ();

}

protected byte [] read_

// Testing only . Will modify a specific file and then place the
// updated data into the network .
protected void handle_submit_test_data_alarm (){

try {
Runtime runtime = Runtime . getRuntime ();
Process proc = runtime . exec ("./ appendfiledata .pl " + test_filename);

if(proc . waitFor

{
projectname = projectnameField . getText ();
filename = filenameField . getText ();
//If we ’re decvs -ifying the file , add the
//

int debug_level = config .getInt (

if

Listing 3: submithelper.pl
#

}

force cop

Listing 4: reconstructhelper.pl
#!/ usr /bin /perl
Andrew Logan
gethelper .pl
10/22/04
#
Written because making a pile of system calls in Java is a hassle .
This script will reconstruct a CVS repository , and then extract a
file from it. It leaves <filename > in the directory it was
called from .

Here is what we need to do:
Make a CVSROOT
run "cvs init " in it
make a repository directory in it
copy our input ,v files there (CVS only reconstructs files ending in ,v)
run "cvs co r

8 Appendix B: Test Scripts

Listing 5: go big
#!/ usr /bin /perl

go_big
Andrew Logan
logana@bc .edu , andrewlogan@gmail .com
3/14/05

Written to automate the process of doing multiple tests of the
DistCVS system .

$hostname = ‘hostname ‘;
chomp ($hostname);

$start_experiment = 15;
$end_experiment = 15;

for ($i = $start_experiment ; $i < $end_experiment +1; $i ++){
if ($i > $start_experiment){

print "***** WAITING TO BEGIN EXPERIMENT $i *****\ n";

sleep (10 * 60);
}

print "***** BEGINNING EXPERIMENT $i *****
Tj ET BT 5.97758 0 0 5.97758 17556.2152 468.4801 Tm /Tc17 758 0 0 5.978 0 0 5.97758 328.1T 5.97x

*

Listing 6: go
#!/ bin /bash

go
Andrew Logan
logana@bc .edu , andrewlogan@gmail .com

Starts a single test of the Bamboo system .

./ run_local_nodes .pl -nodes =10 -with_updater -with_gateway

xxxvi

Listing 7: run local nodes.pl
#!/

$gateway_pause = 1 * 60;
$gateway_pause = 15;
$gateway_pause = 0;

$inter_node_pause = 30;
$inter_node_pause = 15;
$inter_node_pause = 0;

#in se

u

w

i

sleep (

if($liveport != -1){
#‘ echo $message >> $hostname : $liveport / diff_results .log ‘;
log_to_node ($message , $liveport);

}
}

}

sub log_to_node {
my ($message , $portnum) = @_;
print " log_to_node : message : $message portnum : $portnum \n";
‘echo $message >> $hostname : $portnum / diff_results .log ‘;

}

xliii

Listing 8: parse cfg and run.pl
#!/ usr /bin /perl

parse_cfg_and_run .pl
Andrew Logan
logana@bc .edu , andrewlogan@gmail .com
12/6/04

This perl script will parse through a Bamboo configuration fi

pgo

i

i

n

if($hide_gui){
$show_gui_var = false ;

}
else {

$show_gui_var = true ;
}

if($do_adsh){
$automatic_data_submission_hack = true ;

}
else {

$automatic_data_submission_hack = false ;
}

$data_manager_d

cleanup ();
exit (1);

}

clear the temp files from the experiments
#‘ rm diff_re

Listing 9: modified run

debug_level 0
logfile_name diff_results .log
automatic_test true
u

Listing 11: make global experiment stats.pl
#!/ usr /bin /perl
#
make_g

Listing 12: process and send results.pl
#!/ usr /bin /perl

process_and_send_results .pl
Andrew Logan
logana@bc .edu , andrewlogan@gmail .com
3/15/

9 Appendix C: Bibliography

References

[1] B. Berliner. CVS, The Concurrent Versioning System .
http://www.gnu.org/manual/cvs1.9/html chapter/cvs 2.html.

[2] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and
B. Wiley. Protecting free expression online with freenet.
IEEE Internet Computing, 6(1):40--49, 2002.

[3] P. Druschel and A. Rowstron. Past: A large-scale,
persistent peer-to-peer storage utility. In HotOS VIII,
May 2001.

[4] S. P. Ratnasamy. A Scalable Content-Addressable Network.
PhD thesis, Dept. Comp. Sci., University

and Internet Use in the United States: August 2000.
http://www.census.gov/prod/2001pubs/p23-207.pdf, 2001.

liii

