
On Uniform Inference in Nonlinear Models with Endogeneity

Shakeeb Khan�

Boston College

Denis Nekipelov�

University of Virginia

First Version: October 2014

This Version: September 2019

Abstract





(2009). In Sections 2 and 3 we show that the large sample behavior of existing inference

methods vary discontinuously with the degree of selection on unobserved variables, with

one extreme case being when selection is on observed variables only. As we will show this

discontinuity results in impossibility results for valid uniform inference, and motivates our

new inference procedures. Sections 4 and 5 explores the �nite sample properties of our new





What complicates inference on for � 0 is that how well one can estimate � 0 depends on

the type of selection in the model, something which is unknown to the econometrician.

For example, if the selection in the model is on observables only, which corresponds to

U; V being uncorrelated with each other, than � 0 can be consistently estimated at the

standard parametric rate by, for example OLS or WLS only using the observations where

D = 1. However, both OLS and WLS will be inconsistent if there is any amount of

selection on unobservables. An alternative estimator would be to take into account selection

on unobservables. One such estimator is proposed in Heckman (1990) and Andrews and

Schafgans (1998). We propose a di�erent one in this paper that will be the basis of our

inference procedure.

Neither the Andrews and Schafgans (1998) (AS) estimator nor the new estimator (KN) we

propose will have standard asymptotic properties (i.e parametric rates of convergence, limit-

ing Gaussian distributions). These nonstandard properties will continue to hold even in the

case when selection on observables only. The comparison of both the AS and KN estima-

tors to the standard OLS and WLS estimators represents the classical robustness-e�ciency

tradeo�; OLS,WLS is not robust to selection on unobservables, but is more e�cient than

AS or KN if selection is on observables only.

To introduce an inference procedure that allows for both types of selection we consider the



that U and V



Alternatively, we can write

� 0 =
E [Y j Z = z]

P(z)
� E [U j V � z] ;

where P(z) = E [DjZ = z]. Then given the assumption that support of Z is large, we can

see that lim
z! +1

P(z) = 1 and lim
z!1

E [U j V � z] = E [U] = 0, therefore

� = lim
z! +1

E [Y j Z = z] :

We note that this expresses the parameter of interest in terms of the observable conditional



2.1 Conditionally exogenous selection

We begin our analysis with a model based on \selection on observables". In this model

the mean of the error in the main equation is zero conditional on the error term in the

selection equation: E [U j V ] = 0. With the assumed independence of the \instrument" Z

from the error terms, this also means that the mean of the error in the main equation is

zero uniformly over the values of Z . We note that in this case we can directly use the

system of equations of interest to show identi�cation. In particular, we note that the mean

independence condition implies that E [U j V � z] = 0, if the corresponding conditional

density is well-de�ned. Then we also note that

E [U D j Z = z] = E [U j V � z] :

Then we can write

E [Y j D = 1; Z = z] = � 0 + E [U j D = 1; Z = z] = �:

We note that conditioning on Z



to the case where the two error terms are correlated. In particular, we �rst note that

E [Y j Z = z] = � 0 P(z)

can be rewritten as

� 0 f V (z) =
@E[Y j Z = z]

@z
;

where the derivatives are well-de�ned under Assumption 1. Therefore

� 0 =
@E[Y j Z =z]

@z

f V (z)
:

2.2 A uniformly consistent estimator for the intercept in the sample selection

model

Now suppose that the only assumption that is imposed on the error terms is that E [U] = 0.

As we previously established, this assumption is su�cient to identify the intercept in the

main equation under the full support assumption. The intercept can be expressed as

� 0 = lim
z! +1

E [Y j Z = z] :

We note that by the dominated convergence theorem lim
z!�1

E [Y j Z = z] = 0. Since work-

ing with pointwise limits of functions is often not convenient, we propose the following

transformation that allows us to express the parameter of interest directly from the primi-

tives of the model:

� 0 = lim
z!1

Z z

� z

@E[Y j Z = z]

@z
dz:

Taking the limit, we �nd that the parameter of interest can be represented as an improper

integral

� 0 =

Z +1

�1

@E[Y j Z = z]

@z
dz

We can re-arrange this equation using Fubbini’s theorem, and make the estimator take a

form similar to that where the error term in the main equation is mean independent from

the error term in the selection equation. Thus, we can obtain that under Assumption 1

� 0 =

Z +1

�1

@E[Y j Z = z]

@z
1

f Z (z)
f Z (z) dz = E

"
@E[Y j Z ]

@z

f Z (Z )

#

:
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We note that this identi�cation argument leads to a similar expression to that in Lewbel

(1997), Lewbel (2007), Lewbel (1998).

Therefore, we can introduce the random variable W = f Z (Z )� 1 @E[Y j Z ]
@z and the estimator

is constructed as a sample average of the draws of this random variable2:

b� =
1

n

nX

i



THEOREM 1 Suppose that identi�cation Assumption 1 holds and one uses the bootstrap

sample W �
i



sistent uniformly over the distributions satisfying Assumption 1, is not compatible with

pivotal inference.

THEOREM 2 Suppose that Assumption 1 holds and E [U] = 0. Then the empirical dis-

tribution of

bT� =

1
n

nP

i=1
wi

s
1
n

nP

i=1
w2

i

is non-pivotal. In other words, for any � > 0 there exist two distributions of (U; V; Z)

denoted F 1
U;V;Z and F 2

U;V;Z satisfying Assumption 1 such that

Pr
�

bT� � t
� F k

U;V;Z
�! Fk(t); k = 1; 2

and

sup
t2 R

jF1(t) � F2(t)j > �:

In light of these negative results for both the bootstrap and the t � statistic, the question

remains as to what are the origins of this behavior of the estimator and whether there are

ways of characterizing its actual asymptotic behavior. As it turns out, a main reason for

this behavior is the non-existence of the second moments. When the second moment of

the random variable does not exist, the
p

n-normalized centered sample average will not

converge in distribution.

A natural direction to proceed in this case is to consider trimming W to obtain random

variables that have a �nite second moment for each n. Such a solution has been suggested in

Andrews and Schafgans (2001) where it was assumed that the tail behavior of the distribu-

tion of W is given. However, in many practical settings, the tail behavior of the unobserved

component of the model is unknown. Then the tail index of this unknown distribution

becomes an ancillary parameter that itself has to be estimated. Original estimators of the

tail index can be found in Hill (1975) and Pickands (1975), and for a more recent develop-

ment see M�uller and Wang (2017). The convergence rate of the estimator of this parameter

may be extremely slow and thus its behavior will dominate the behavior of the remaining

components of the trimmed estimator, see e.g. McCulloch (1986), McCulloch (1997).
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This indicates that the estimators based on the oracle properties of the distribution, such

as the estimator based on trimming are infeasible or they may invoke a slow adaptive rate

that incorporates the fact that the tail behavior should itself be estimated.

The absence of convergence in distribution of
p

n-normalized centered sample averages leads

to the general absence of convergence in distribution for pivotized statistics. If F is the class

of distributions satisfying Assumption 1 then in general the distribution of the t-statistic

does not converge uniformly to normal distribution. In other words even if we found a

candiate F 0 2 F such that Pr
�

bT� � t
�

! �(t) for each t 2 R then for any � > 0:

lim
n!1

sup
t2 R

sup
kF � F 0k1<�; F 2F

�
�
�Pr

�
bT� � t

�
� �(t)

�
�
� 6! 0;

where �(�) is the standard normal cdf.

Theorem 2 has important implications for conducting inference in this model. In previous

work, Andrews and Schafgans (1998) showed that a studentized estimator in the selection

model could indeed be used to conduct valid inference for a wide class of distributions

of observables and unobservables, satisfying certain relative tail restrictions. Our above



In this context it may seem attractive to use some form of pre-testing to establish whether

the given model exhibits selection on unobservables. This naturally leads us to the estimator

that has the structure of the Hodges estimator:

b� H =

(
b�; if jb� � b� 0j > C=

p
n;

b� 0; if jb� � b� 0j � C=
p

n:

This estimator however, exhibits a non-uniform behavior. In fact, for any distribution of

error terms that is compatible with selection on observables we can �nd another distribution

that will be arbitrarily close to the original distribution in the L 2 norm de�ned by the

probability measure associated with random variable Z , but it will not be compatible with

mean independence. The rate of convergence of the consistent estimator for � under that

distribution may be as slow as log n� for some � > 0. Moreover, the structure of the

asymptotic distribution of the consistent estimator for these two close distributions of error

terms is dramatically di�erent: while it is normal in the model with selection on observables,

it is may be represented by the distribution of a stable L�evy process in the model with



Hellinger and L 2 distance between these two distributions converges to zero as the sample

size increases. This approach may be attractive for two reasons. First, we approximate the

distribution of W in the area of the support of Z that has the highest probability mass with

the distribution that has �nite second moments. Thus, it delivers the parametric conver-

gence rate for the unweighted sample mean characterizing b� . Second, given that we control





for W using the density f W (�) with the �nite second moment up to normalization as:

f c
W (w) = f W (w) +

hc

� n
(sW (w) � f W (w)) ; (3.1)

where 0 < h c � 1 and h0 = 0 and is continuous at c = 0. Note that this requirement is

imposed on hc to ensure that f c
W (�) is a valid density and that it converges uniformly in w

and n to f W (�) when c is in the neighborhood of zero.

THEOREM 3 If the random variable W is distributed according to (3.1) then we can

establish that the limiting distributions of partial sums has the following limit:

1
p

n

nX

i=1

wi
d�! �B (1) + hcL 2=(1+c)(1);

where B (�) is the standard Brownian motion and L 2=(1+c)(�) is the 2=(1 + c)-stable L�evy

process with c 2 [0; 1]. In other words, the asymptotic distribution is a mixture of the

normal distribution and the stable distribution.

Thus, the advantage of this constructed local asymptotics is that, for one, the convergence

to its asymptotic distribution will occur at parametric rate. As a result, there is no need

to design an estimation procedure that will adapt both to the convergence rate and to the

asymptotic distribution (as is necessary in case of standard heavy tail asymptotics). Second,

our structure has a clear interpretation where the normal component characterizes the

asymptotic distribution close to the expected value of W while the L�evy process component

is responsible for the tail behavior of that asymptotic distribution.

The tail behavior of the asymptotic distribution as c varies from 0 to 1 changes from the

case where this distribution has a �nite second moment and thus asymptotically normal, to

the case where this distribution only has a �nite �rst moment and no higher moments. The

object of interest will be the quality of the approximation of the asymptotic distribution

uniformly over c 2 [0; 1). The following result establishes the uniform normality of the

asymptotic distribution for the t-statistic constructed for b� .

THEOREM 4 Suppose that Assumption 1 holds and E [W ] = 0. Let F c
T (w) be the distri-

bution of random variable constructed as

T c =
�B (1) + hcL 2=(1+c)(1)
q

� 2 + h2
cL +

1=(1+c)(1)
;
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where L +
1=(1+c)(�) is the 1=(1 + c)-stable L�evy process de�ned on R+ n f 0g: Then the distri-

bution of random variable T c uniformly approximates the distribution of the t-statistic

bT c =
1
n

P n
i=1 wiq

1
n

P n
i=1 w2

i

;

such that for some � > 0

lim
n!1

sup
c2 [0;1� � ]

sup
t2 R

�
�F bT c (t) � Pr (T c � t)

�
� = 0:

It is useful to point out the similarities and di�ferences between Theorem 3 and 4 and

existing results in the econometrics literature. On the one hand we note similarities between

our results and on the inference in the autoregressive model with a near unit root and the

models with weak instruments. The similarity of these models to ours is in the discontinuity

of the distribution of the estimator for the parameter of interest with respect to the data

generating process. In the near unit root case, the presence of the unit root discontinuously

changes the asymptotic distribution from the normal to the non-standard Dickey-Fuller

distribution. In the weak instrument case, the distribution of parameter changes from

normal to Cauchy in case of the full irrelevance of an instrument.

But our model and results di�er in important ways. The distribution of the estimated

parameter (and its convergence rate) changes in response to any change in the parameters

of the data-generating process. Therefore, it will be impossible to �nd a unique local

parametrization of the model that makes its asymptotic distribution change continuously

with respect to the model parameters. Consequently, in the choice of local parameterization

we need to de�ne, �rst, the \focal" data generating process. Second, given that focal data

generating process we de�ne the parametrization for local data generating processes (in

the small neighborhood of the focal data generating process) that converges to that data

generating process.

3.1 Approaches to inference

As we mentioned previously, one of the di�cult components of inference for the parameter

of interest is in the construction of its distribution theory that requires the estimation of the

tail index of its domain of attraction. This index determines both the rate of convergence

and the shape of the con�dence set for the parameter of interest. Politis, Romano, and Wolf



Consider subsampling with subsample block size b and let b� n;b;i be the parameter estimate

in the i -th subsample and b� n;b;i be the standard deviation computed in that subsample.

THEOREM 5 (Politis, Romano, and Wolf (1999)) Suppose that the tail index 1 + 

is �xed. The subsampling approximation L �
n;b = 1

Nn

P Nn
i=1 1

np
b

�
b� n;b;i � b�

�
=b� n;b;i � x

o

converges uniformly to the distribution of variable U=V if b ! 1 and b=n! 0 as n ! 1 ,

where U is the domain of stable attraction of partial sums of W and V is the domain of

stable attraction of partial sums of W 2.

This is a very useful result allowing to construct approximation for the asymptotic distri-

bution of a pivotized variable without requiring the estimation of the tail index. We note

however that the quality of subsampling approximation will deteriorate when the tail index

1 +  approaches 1. The reason is that the standard deviation will be converging to the

stable law with tail index (1 +  )=2 (meaning that the corresponding distribution does not

have a mean) and thus the constructed statistic will be highly variable across the subsam-

ples. This may require a more conservative inference method. The method that we propose

below allows one to construct such conservative bounds under local asymptotics.

THEOREM 6 Consider local asymptotics with a sequence of distributions (3.1). The

subsampling approximation L �
n;b = 1

Nn

P Nn
i=1 1

np
b

�
b� n;b;i � b�

�
=� � x

o
converges uniformly

to standard normal distribution if b ! 1 and n=log b! 1 as n ! 1 .

Thus, under the local asymptotics, the subsampling distribution converges to a pivotal

normal distribution. The reason for that is that the component of the limiting distribution

which is responsible for the \outliers" is vanishing faster than the subsample size. The

distribution then converges to the non-vanishing normal limit. The subsampling is used

to estimate the correct variance � 2 of the normal component of the limiting distribution

mixture.

The structure of the local distribution gives an idea for non-conservative and conservative

inference based on the extracted normal distribution quantiles. The non-conservative infer-

ence will correspond to using the extracted normal quantiles for inference. The conservative

inference will suggest using the \worst-case scenario" distribution for the outliers meaning

that we need to take hc = 1 and L c(�) to be the standard stable Levy process with c = 1.

The resulting conservative con�dence set will be the sum of the normal con�dence set and

the con�dence set constructed from adding a standard Levy process scaled by � .
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4 Simulation Results

In this section we �nite sample properties of the estimation and inference procedures we

propose. To do so we simulate data from the sample selection models, and we report sum-

mary statistics intended to characterize the �nite sample performance of both the existing

and new estimators whose asymptotic properties we established.

Simulation results are for sample sizes of 100, 200, 400 and 800 observations where we

report mean bias,median bias, and RMSE and median absolute deviation (MAD) from

3000 replications. Results for the proposed inverse weight weighted (IVW) estimator of the

intercept in a sample selection model are reported in tables 1-4 5.

For our design in the sample selection model we assumed the bivariate distribution was

standard bivariate normal. The selection equation has a single instrument for which we

considered two designs- one where it was distributed standard normal and the other where

it was distributed standard cauchy. To allow for �xed and drifting parameter sequences

we adjusted the correlation between the two error terms in the selection model. For �xed

parameters we simulated using 4 distinct values of this correlation- 0,0.5,0.75 and 1. For

drifting parameters we divided these 4 di�erent constants by the square root of the sample

size.

As results in Tables 1-4 indicate, our �nite sample results generally agree with our asymp-

totic theory. As we see the RMSE and MSE increase with the sample size when scaled

by the square root of the sample size, indicating the estimator does not converge at the

parametric rate, if at all. In one sense this is not too surprising as no trimming is used.

We also explore the sampling distribution of the estimator. We do this by creating his-

tograms for the estimates attained from the 3000 replications. The graphs are in Figure







stage kernel regression to attain estimators of the slope coe�cients in the outcome (hours

worked) equation.

Our approach here will be to use their estimates of these parameters combined with our

density weighted estimator to estimate the intercept term. Speci�cally, we will treat the

6 slope coe�cients in the outcome equation as known (using the values attained in Ahn

and Powell (1993)) for the coe�cients on log wage, nonwife income, young children, older

children, age and education), and estimate the intercept term using our density weighted

expression. Recall our expression involved estimating the density of the index from the

selection equation. Following Ahn and Powell (1993), we use 10 conditioning variables,

but in contrast, we estimate their coe�cients by estimating a Probit model. With these

estimated coe�cients, we can construct estimated values of the index, to which we apply

kernel density estimation, using a normal kernel function and cross validation for the band-

width, to estimate the density function of the selection equation index. Following Newey,

Powell, and Walker (1990) we treat previous labor market experience, measured in total

years experience, as the excluded variable that is in the employment equation but not the

outcome equation.

Our estimator of � 0 is based on the moment condition:

� 0 + E [x0
i � 0] = EZ

"
d
dz E [yjz]

f Z (z)

#

(5.1)

where f Z (z) denotes the density function of zi and d
dz E [yjz] denotes the derivative of the

regression function of E [yjz].

To estimate � 0, note the right hand side of the above equation can be estimated by

�̂ =
1

n

nX

i=1

�̂ 0(zi )=f̂ (zi ) (5.2)

where �̂ 0(zi ) is a local linear estimator of the derivative of the regression function and f̂ (zi )

is a kernel estimator of the density function.

so our estimator of � 0 is

�̂ = �̂ �
1

n

nX

i=1

x0
i �̂ (5.3)
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Using the standard bootstrap we were able create a histogram for the standardized estimator

as well as provide a quantile plot.

As a comparison, we estimated � 0 from the parametric Heckman model assuming bivariate

normality of the unobserved disturbances. For the parametric estimator we also bootstrap

to create a histogram of the standardized estimator as well as quantile plots. Histograms

and quantile plots are after the Appendix in Figure 4.

The attained results are interesting, notably that contrast between conclusions drawn from

the parametric and semi parametric approaches. The parametric point estimator for � 0

is three times larger in magnitude than the semi parametric point estimator, though both

point estimates are positive. Exploring the bootstrapped con�dence regions, the results

from the two approaches are even more strikingly di�erent. As the quantiles plots reveal,

from the parametric approach the intercept is positive at all signi�cant levels, whereas from

the semi parametric quantile plot the intercept is not signi�cantly di�erent from 0 at most

standard signi�cance levels (0.025, 0.05,0.1). This demonstrates how sensitive the results

can be to parametric assumptions.

6 Models with behavior similar to the sample selection model

While this paper has dealt exclusively with the di�culties in conducting uniform inference

for parameters of interest in the sample selection model. the same problems and di�culties



The object of our interest will be the interaction parameter � . See Vytlacil and Yildiz (2007)

for a related system without the separability conditions imposed above. Without loss of

generality, we �x the coe�cients of linear indices and denote x1 = z0
1 0 and x2 = z0

2� 0. We

assume that the underlying data generating process is driven by the distribution of random

variables (X 1; X 2; U; V). Khan and Nekipelov (2013) have considered this model for the

case where the error terms (U; V) are independent from the index covariates (X 1; X 2) and

demonstrated that the parameter � in this model is identi�ed provided the large support

assumption imposed on the distribution of (X 1; X 2). Khan and Nekipelov (2013) show that

the large support assumption is essential meaning that without further assumptions the



6.2 Static games of complete information

Another example where the structure of the identi�cation argument has a similar avor

to that in the selection model is a 2-player discrete game with complete information (e.g.

Bjorn and Vuong (1985) and Tamer (2003)).

A simple binary game of complete information is characterized by the players’ deterministic

payo�s, strategic interaction coe�cients, and random payo� components u and v. There

are two players i = 1; 2 and the action space of each player consists of two points A i = f 0; 1g



proposed in Tamer (2003) is to use the asymptotic regions where the solution is unique,

thus forming a system of asymptotic equations:

FU (x1 + � 1) = lim
x2! +1

P(Y1 = 1 j X 1; X 2);

FV (x2 + � 2) = lim
x1! +1

P(Y2 = 1 j X 1; X 2):
(6.2)

Provided that Assumption 2 holds, we can identify the parameters of interest through the

explicit expressions

FU (x1 + � 1) = � P(Y1 = 1 j X 1 = x1; X 2 = 0) + E

"
@

@x2
P(Y1 = 1 j x1; X 2)

f X 2jX 1
(X 2jx1)

�
�
�
� X 1 = x1; X 2 � 0

#

;

FV (x2 + � 2) = � P(Y2 = 1 j X 1 = 0; X 2 = x2) + E

"
@

@x1
P(Y2 = 1 j X 1; x2)

f X 1jX 2
(X 1jx2)

�
�
�
� X 1 � 0; X 2 = x2

#

:

This expression demonstrates that the parameters of interest are "identi�ed at in�nity" in

the same sense as the intercept in the sample selection model and the average treatment

e�ect parameter. As a result, we can apply our previous results to demonstrate that any

uniformly consistent estimator for these parameters (i.e. the one that does not rely on

an assumption regarding a particular tail structure of the distribution (U; V)) will have

the properties analogous to those of the uniformly consistent estimator for the intercept.

In particular, the bootsrap will not deliver a consistent approximation for the asymptotic

con�dence sets, and the t-statistics will not converge to the pivotal distribution. We can

however, provide valid inference methods in case where the distribution of the error terms

belongs to a drifting sequence which converges to the distribution with particular tail prop-

erties as the sample becomes larger. In particular, we can use the case where the error terms

are independent as a focal point and construct an approximation with a drifting sequence

that converges to the distribution where the joint density is equal to the product of marginal

densities.

7 Conclusions

This papers considers inference for parameters of interest in nonlinear models with endo-



valid inference for the parameters of interest. This method was illustrated for the sample

selection model and we informally suggest how the general method can applied to other

widely studied models.

The work here suggests areas for future research. As stated many other nonlinear models

will �t into this framework, so we aim to formally propose uniform inference procedures

and prove their asymptotic validity.
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