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Abstract

In this paper we explore inference on regression coefficients in semi parametric multi-
nomial response models. We consider cross sectional, and both static and dynamic
panel settings where we focus throughout on point inference under sufficient condi-
tions for point identification. The approach to identification uses a matching insight
throughout all three models and relies on variation in regressors: with cross section
data, we match across individuals while with panel data we match within individuals
over time. Across models, IIA is not assumed as the unobserved errors across choices
are allowed to be arbitrarily correlated. For the cross sectional model estimation is
based on a localized rank objective function, analogous to that used in Abrevaya,
Hausman, and Khan (2010), and presents a generalization of existing approaches. In
panel data settings rates of convergence are shown to exhibit a curse of dimensionality
in the number of alternatives. The results for the dynamic panel data model gener-
alizes the work of Honoré and Kyriazidou (2000) to cover the multinomial case. A
simulation study establishes adequate finite sample properties of our new procedures
and we apply our estimators to a scanner panel data set.
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1 Introduction

Many important economic decisions involve households’ or firms’ choice among qual-
itative or discrete alternatives. Examples are individuals’ choice among transportation
alternatives, family sizes, residential locations, brands of automobile, health plans etc.
The theory of discrete choice is designed to model these kinds of choice settings and



panels. Throughout we relax the IIA property by allowing for arbitrary correlation in the



proofs of many of the theorems stated in the paper.

2 Semiparametric Multinomial Choice

We consider the standard multinomial choice model where the dependent variable takes
one of J + 1 mutually exclusive and exhaustive alternatives (numbered from j = 0 to
j = J). Specifically, for individual i, alternative j is assumed to have an unobservable
indirect utility y�

ij for that individual. The alternative with the highest indirect utility is
assumed chosen. Thus the observed variable yij has the form

yij = 1[y�
ij > y�

ik for all k 6= j]

with the convention that yij = 0 indicates choice of alternative j is not made by agent i.







x�
1 = ~x1� and x�

2 = ~x2�. This objective function does not get us information about  since with
the matching, z drops out. But, once x�

1 and x�
2 are “known”, then one can use another rank

procedure in a second step where we condition on x�
1 = x�

2. The choice probability for choice 1 for



In addition, assume a random sample of observations of the vector (yi ; xi ); i = 1 ;2; :::n, G(1)
1n (b)



Then define
�2(�i ; �) = �(y(1)

i ; xi 1; �; xi 2) � f2(xi 2)

where f2(�) denotes the density function of xi 2. The function �2(�; �) will characterize the
limiting distribution of the maximizer of 2.4. We have the limiting distribution theorem
theorem, whose proof follows from identical arguments to those used in Abrevaya et al.
(2010), and is based on the following regularity conditions:

KWR1 The parameter space B is compact.

KWR2 Random sampling of (y(1)
i ; xi 1; y

(2)
i ; xi 2)

KWR3 �i 1; �i 2 is distributed independently of xi 1; xi 2, and has density function which is
positive on R2.

KWR4 Conditional on xi 2, xi 1 has rank p.

KWR5 For all � in a neighborhood of �0 and all �i in its support, � (�i ; �) is twice contin-
uously differentiable with respect to �.

KWR6 The p � p matrix r2�2(�i ; �0) is invertible, where r2�2(�; �) denotes the second
derivative of �2(�; �) with respect to its second argument.

KWR7 The p � 1 vector r1�2(�i ; �0) has finite second moment, where r1�2(�; �) denotes
the first derivative of �2(�; �) with respect to its second argument.

KWR8 The density function of x2i , f2(�) is ‘ times continuously differentiable with bounded
‘th derivative, where ‘ is an even integer satisfying ‘ > p=2.

KWR9 The kernel function K(�)is of order ‘ and hn satisfies
p
nh`

n ! 0 and nhp
n !1.

Theorem 2.2. Under Assumptions KWR1-KWR9,

p
n(�̂ � �0) ) N (0; V � 1� V � 1)

where V = 1
2E[r2�2(�i ; �0) and � = E[r1�2(�i ; �0)r1�2(�i ; �0)0].
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3 Panel Data Multinomial Choice

3.1 Static Multinomial Choice

Paralleling the increase in popularity of estimating multinomial response models in ap-
plied work is the estimation of panel data models. The increased availability of longi-
tudinal panel data sets has presented new opportunities for econometricians to control
for individual unobserved heterogeneity across agents. In linear panel data models, un-
observed additive individual-speci�c heterogeneity, if assumed constant over time (i.e.,
“�xed effects”), can be controlled for when estimating the slope parameters by �rst dif-
ferencing the observations.

Discrete panel data models have received a great deal of interest in both the econo-
metrics and statistics literature, beginning with the seminal paper of Andersen (1970).
For a review of the early work on this model see Chamberlain



among others. The literature on multinomial choice for panel data is more limited. Re-
cent results include Shi et al. (2018) and Pakes and Porter (2014). The latter is concerned
with partial identification. The former achieves point identification. For recent work on
partial identification in binary dynamic panel data models under weak assumptions, see
also Khan et al. (2019).

Here we propose point identification results under similar weak conditions as ones
used in Manski (1987). To illustrate our identification results, assume T = 2 ; J = 2 (So
the choice set is f0;1;2g, with 2 time periods) w.l.o.g. and as before impose normalization
that y�

i 0t � 0 for t = 1 ;2.

Our identification strategy will be analogous to the cross-sectional case, but now we
match and do our comparisons within individuals over time as opposed to pairs of indi-
viduals. As we will show the analogy is not perfect as we have to condition on “switch-
ers”, in a way similar to the estimation of the conditional Logit model in Andersen (1970)



Notation: (i) y



Theorem 3.1. �0 is point identified relative to all b 2 Bnf�0g. Let b�





y�
i 0t = 0

y�
i 1t = x0

i 1t � 0 +  01[yi 1(t � 1) = 1] + � i 1 � � i 1t

y�
i 2t = x0

i 2t � 0 + � i 2 � � i 1t

In this model, the parameters of interest are � 0 and  0. Identi�cation is more com-
plicated in dynamic models, even for binary choice. For example, Chamberlain (1985)
shows that � 0 is not identi�ed when there are 3 time periods, t = 0; 1; 2.8 Honor é and
Kyriazidou (2000) show point identi�cation 9 of � 0 and  0 when there are 4 time periods,
t = 0; 1; 2; 3. Their identi�cation is based on conditioning on the subset of the population
whose regressors do not change in periods 2 and 3. Finally, Khan et al. (2019) derive sharp
bounds for coef�cients in dynamic binary choice models with �xed effects under weak
conditions (allowing for time trends, time dummies, etc).

Our identi�cation strategy for the dynamic multinomial choice model is based on con-
ditioning on the subpopulation whose regressors are time-invariant in different manners,
depending on which alternative they are associated with. Speci�cally, in the three choices,
four time periods setting above we condition on the subpopulation whose regressor val-
ues for choice 2 do not change in period 1, 2 and 3 and whose regressor values for choice
1 do not change over time in period 2 and 3.

After such conditioning, the problem reduces to identifying parameters in a dynamic
binary choice model, for which existing methods can be applied. For example, if the post
conditioning model is a dynamic Logit, which would arise if we begin with a dynamic
multinomial Logit, we can use the method proposed in Honor é and Kyriazidou (2000),
which is valid for four time periods. An attractive feature of their procedure is that when
the covariates are discrete, the estimator will converge at the parametric rate with a limit-
ing normal distribution, so conducting inference is relatively easy. We demonstrate both
methods for the dynamic multinomial choice model considered here.

For the dynamic multinomial Logit model, we use the following conditional likeli-

8But  0 is identi�ed if � 0 = 0 .
9Their point identi�cation result requires further restrictions on the serial behavior of the exogenous regres-
sors that rules out, among other things, time trends as regressors. Our identi�cation result for the dynamic
multinomial choice imposes similar restrictions and so also does not allow for time trends as regressors.
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for all � 2 � ; and (iii) � x � (x0
2(12) ; x

0
2(23) ; x

0
1(23))

0 and the event 
 � f� x = 0g. Here
we deliberately keep the notation as close as possible to Honoré and Kyriazidou (2000).
Then, we outline the regularity conditions for point identification and consistency of our
semiparametric estimator based on the objective function (3.3).

DP1 f(yi ; xi )gn
i =1 is a random sample of n observations, where yi � (y0

i 0; y0
i 1; y0

i 2; y0
i 3)0 and

xi � (x0
i 1; x0

i 2; x0
i 3)0



4 Simulation Study



y�
i 0 = 0

y�
ij = x(1)

ij + �1x
(2)
ij + �2x

(3)
ij � �ij ; j = 1 ;2

where x(1)
ij ; x

(2)
ij ; x

(3)
ij denote the 3 components of the vector xij , �1 = �2 = 1 , x(1)

i 1
iid� N (0;1),

x(1)
i 2

iid� Bino(1;0:5), x(k)
ij

iid� Bino(1;0:5) for all j 2 f1;2g and k 2 f2;3g, and

(�i 1; �i 2) iid� MVN

  
0
0

!  
1 0:5

0:5 1

!!

Table 1 reports the results for this benchmark design.

Table 1: (Design 1) 3 Choices, 3 Regressors, 2 Parameters

�1 �2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 250 0.0161 0.4706 0.0104 0.3430 0.0182 0.4798 -0.0135 0.3383

N = 500 0.0418 0.3726 0.0190 0.2297 0.0428 0.3684 0.0224 0.2222

N = 1000 0.0138 0.2619 0.0022 0.1562 0.0098 0.2577 -0.0022 0.1585

As our cross-sectional estimator is “localized” (matching covariates associated with
J � 1 alternatives), one may worried about that the dimensionality of the design (both
in the regressor space and choice space) may have a large effect on the results in Monte
Carlo studies. In order to investigate the finite sample performance of the proposed esti-
mator in higher dimensional, more complicated designs, we consider the following two
modifications of the benchmark design:

� Design 2: We keep the choice set and error distribution unchanged, while add two
regressors to the benchmark design. Specifically, we consider the DGP with latent
utility functions:

y�
i 0 = 0

y�
ij = x(1)

ij + �1x
(2)
ij + �2x

(3)
ij + �3x

(4)
ij + �4x

(5)
ij � �ij ; j = 1 ;2

where �1 = �2 = 1 , �3 = �4 = 0 , x(1)
i 1

iid� N (0;1), and all other regressors are iid
Bino(1;0:5). Note that the DGP is the same as for the benchmark case and the only
difference is that two additional regressors are included in the estimation.
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� Design 3: We keep the latent utility fun17



shrink at the parametric rate. This seems true regardless of the number of regressors,
though as expected performance for each sample size deteriorates with the number of
regressors. However, that is not the case as we increase the size of the choice set. As
seen in Table 3, with five choices, the finite sample performance is relatively poor, and
furthermore, does not improve with larger sample sizes as well as it did in the other
designs. Thus it appears to us that for this model the adversarial effects of dimensionality
lie in the choice dimension and not as much in the regressor dimension.16

We then turn to examine the finite sample properties of the maximum score estimators
for panel data multinomial choice models. We start from the static panel case and consider
the design (Design 4) with choice set f0;1;2g and a panel of two time period (T = 2 ). The
latent utility functions for individual i in time period t 2 f1;2g are

y�
i 0t = 0

y�
ijt = x(1)

ijt + �1x
(2)
ijt + �2x

(3)
ijt + �ij � �ijt ; j = 1 ;2

where �1 = �2 = 1 , x(1)
i 1t

iid� N (0;1) for all t, all other regressors are iid Bino(1;0:5), and

(�i 11; �i 21; �i 12; �i 22)
iid� MVN

0

B
B
B
@

0

B
B
B
@

0
0
0
0

1

C
C
C
A

0

B
B
B
@

1 0:5 0:5 0:5
0:5 1 0:5 0:5
0:5 0:5 1 0:5
0:5 0:5 0:5 1

1

C
C
C
A

1

C
C
C
A

The fixed effects are generated as �i 1 = T � 1
P T

t=1 xi 1t and �i 2 = T � 1
P T

t=1 xi 2t � 0:5. In
Table 4 and 5, we report respectively the results for this static panel design using one-step
and two-step maximum score estimators.

Table 4: (Design 4) 3 Choices, 3 Regressors, 2 Parameters, 2 Periods

�1 �2



Table 5: (Design 4, Two-step) 3 Choices, 3 Regressors, 2 Parameters, 2 Periods

�1 �2

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 -0.0539 0.6008 -0.0580 0.5144 -0.0562 0.5895 -0.0513 0.4842

N = 1000 -0.0413 0.5978 -0.0479 0.5134 -0.0497 0.5732 -0.0477 0.4717

N = 2000 -0.0252 0.5557 -0.0356 0.4311 0.0154 0.5632 0.0014 0.4465

N = 5000 0.0329 0.4930 -0.0033 0.3598 0.0017 0.4928 -0.0203 0.3568

N = 10000 0.0256 0.4438 0.0065 0.3149 0.0389 0.4415 0.0100 0.3131

Our dynamic panel design (Design 5) has the same choice set as the static design but
four time periods (T = 3 , t 2 f0;1;2;3g). The latent utility functions are

y�
i 0t = 0 ; t = 0 ;1;2;3

y�
ij 0 = x(1)

ij 0 + �x(2)
ij 0 + �ij � �ij 0; j = 1 ;2

y�
i 1t = x(1)

i 1t + �x(2)
i 1t + yi 1(t � 1) + �i 1 � �i 1t ; t = 1 ;2;3

y�
i 2t = x(1)

i 2t + �x(2)
i 2t + �i 2 � �i 2t ; t = 1 ;2;3

where (�; ) = (1 ;0:5), yi 1(t � 1) = 1[ui 1(t � 1) > maxf0; ui 2(t � 1)g], x(1)
i 1t

iid� N (0;1) for all t, all
other regressors are iid Bino(1;0:5), and

(�i 1t ; �i 2t ) �MVN

  
0
0

!  
1 0:5

0:5 1

!!

independent across i and over time. We use the same way to generate the fixed effects





be expected as the logit estimator is based on iid type 1 extreme value errors.

Table 8: (Design 5, Logit) 3 Choices, 3 Regressors, 2 Parameters, 4 Periods

� 

Mean RMSE Median MAD Mean RMSE Median MAD

N = 500 0.6760 0.8963 0.6036 0.3433 1.5346 3.6605 0.4860 2.0067

N = 1000 0.6535 0.7731 0.6337 0.2569 1.8503 3.8376 2.0596 2.3813

N = 2000





� x(2)
ijt : “display”, 0-1 valued.

� x(3)
ijt : “feature”, 0-1valued.

Note that the data set is an unbalanced panel with n = 136 households and T varying
with i (minfTig = 14, maxfTig = 77).
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As we can see, the results are strikingly different. For the parametric estimators for
multinomial Probit relative coefficients for display and feature are 0.1226 and 0.9608, re-
spectively. For multinomial Logit, they are 0.2150 and 1.1829. In each parametric set-
ting, the coefficient (ratio) on display is not significantly different from 0 at the 95% level,
whereas the coefficient on feature is significantly positive. For our semiparametric esti-
mates, the results are coefficient estimates of (0:3331;0:3081)



where as above yi 1t = 1[yit = 1] .

Employing each of our two estimators for the dynamic model, our estimation results
were ( b�1; b�2; b) = (1 :5041;1:4408;0:5710)with criterion function = 3:118645for the semi-
parametric estimator, and ( b�1; b�2; b) = (0 :1274;1:6865;0:6185)for the Logit. Note for both
the semiparametric and Logit estimates the first two estimated coefficients are very dif-
ferent when compared to the static model, indicating the dynamic specification may be
relevant for this data set, and ignoring this aspect can lead to misspecification. This point
is consistent with the estimated coefficient on lagged choice being quite different from
zero, indicating “persistence” in consumer behavior for this product.

Table 12: Parametric and Semiparametric Estimates for Dynamic Panel Data Model

�1 �2 
Semiparametric 0.6024 1.2716 0.4005
Conditional Logit 0.8270 2.2931 1.2091

6 Conclusions

In this paper we proposed new estimation procedures for semiparametric multin1o3cclusions



References

ABREVAYA



HAN, A. K. (1987): “Non-Parametric Analysis of a Generalized Regression Model: The
Maximum Rank Correlation Estimator,” Journal of Econometrics, 35, 357–362.

HANDEL, B. R. (2013): “Adverse selection and inertia in health insurance markets: When
nudging hurts,” American Economic Review, 103, 2643–82.

HECKMAN, J. (1978): “Dummy Endogenous Variables in a Simultaneous Equation Sys-
tem,” Econometrica, 46, 931–960.

——— (1981): “Statistical Models for Discrete Panel Data,” in Structural Analysis of Dis-
crete Data, ed. by C. Manski and D. McFadden, MIT Press.

——— (1991): “Identifying the Hand of the Past: Distinguishing State Dependence from
Heterogeneity,” American Economic Review, 75–79.

HODERLEIN, S. AND H. WHITE (2012): “Nonparametric Identification in Nonseparable
Panel Data Models with Generalized Fixed Effects,” Journal of Econometrics, 168, 300–
314.
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A Static and Dynamic Panel Data Estimators

A.1 Static Panel Data Estimators

A.1.1 Consistency

Let 
 denote the event x2(12) = 0 . To simplify notation, we define z1 = x2(12) , z2 = y1(12) ,
z3 = x1(12) ,

Q(b) = f (0)E[�(b)j
]

Qn (b) =
1
nhp

n

nX

i =1

K(z1i=hn )�i (b)

and
’(�) = f (�)E[�(b)jz1 = �]

In what follows, we focus on the case where B � fb 2 Rp : b1 = 1g. The case with
B � fb 2 Rp : b1 = �1g is symmetric.

Lemma A.1. Under Assumptions SP3 - SP6, Q(�0) > Q(b) for all b 2 B n f�0g.

Proof of Lemma A.1. Denote Zb = fz3 : sgn(z0
3b) 6= sgn(z0

3�0)g for all b 2 B n f�0g. Note that
P (~z0

3
~b = ~z0

3
~�0j
) < 1 by Assumption SP5, and P (z(1)

3 2 Nj~z3; 
) > 0 by Assumption SP4,
where N = f�~z0

3
~b < z(1)

3 < �~z0
3
~�0g [ f�~z0

3
~�0 < z(1)

3 < �~z0
3
~bg. Therefore,

P (Zbj
) = P (z(1)
3 2 Nj~z0

3
~b 6= ~z0

3
~�0; 
) P (~z0

3
~b 6= ~z0

3
~�0j
) > 0

Then, we have

Q(�0) �Q(b)

= f (0)E[z2(sgn(z0
3�0) � sgn(z0

3b)) j
]

=2f (0)
Z

Z b

sgn(z0
3�0)E[z2jz3; 
] dFz3 j 


=2f (0)
Z

Z b

sgn(z0
3�0)E[E[z2jx; �; 
] jz3; 
] dFz3 j 


=2f (0)
Z

Z b

E[sgn(z0
3�0)(P (y11 = 1 jx; �; 
) � P (y12 = 1 jx; �; 
)) jz3; 
] dFz3 j 


Next, note that by definition,

P (y11 = 1 jx; �; 
) = P (x0
11�0 + �1 � �11 > maxf0; x0

21�0 + �2 � �21gjx; �; 
)
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and

P (y12 = 1 jx; �; 
) = P (x0
12�0 + �1 � �12 > maxf0; x0

22�0 + �2 � �22gjx; �; 
)

Hence, by Assumption SP3, we have sgn(P (y11 = 1 jx; �; 
) � P (y12 = 1 jx; �; 
)) =
sgn(z0

3�0). Furthermore, P (y11 = 1 jx; �; 
) = P (y12 = 1 jx; �; 
)



1 . Then, asFb is Euclidean for the constant envelope 1 (see Example 2.11 in Pakes and
Pollard (1989)), F is Euclidean for the constant envelope supv2 Rp jK (v)j < 1 . Next, note
that by Assumptions SP6 and SP8(ii),

sup
F n

EjK (z1=hn )� (b)j = sup
F n

Z
E[jK (z1=hn )� (b)jjz1]f (z1)dz1

= sup
F n

hp
n

Z
K (v)E[j� (b)jjz1 = vhn ]f (vhn )dv

� sup
F n

hp
n

Z
K (v)f (vhn )dv = O(hp

n )

Then, under Assumption SP9(ii), applying Lemma 5 in Honor é and Kyriazidou (2000)
yields

sup
F n

hp
n jQn (b) � EQn (b)j = Op

 r
hp

n logn
n

!

= op(hp
n )

As the �nal step, we show that supb2B jQ(b) � EQn (b)j = o(1). Notice that by Assumptions
SP7, SP8(ii), SP8(iii), and SP9(i),

sup
b2B

jQ(b) � EQn (b)j = sup
b2B

j' (0) � h� p
n

Z
K (z1=hn )' (z1)dz1j

= sup
b2B

j' (0) � h� p
n

Z
K (z1=hn )[' (0) + ' (1) (� )0z1]dz1(



where �n (z) = 2h� (J � 1)p
n K(z1=hn )z2. By definition and change of variables, we have

E[�n (z)2jz3] = 4h� (J � 1)p
n

Z
K(v)2fz1 jz26=0 ;z3 (vhn )P (z2 6= 0 jz3)dv

almost surely for all n. Under Assumptions SP3, SP6’, and SP8’(i), there exist some c1; c2 >
0 such that c1 < h(J � 1)p

n E[�n (z)2jz3] < c2 almost surely. Then, using the same argument in
Seo and Otsu (2018) (Section B.1 of the supplementary material), we have for all b1; b2 2 B,

h(J � 1)p=2
n k(gn;b1 (z) � gn;b2 (z)k2

=E[h(J � 1)p
n �n (z)2(1[z0

3b1 > 0]� 1[z0
3b2 > 0])2]1=2

=E[h(J � 1)p
n E[�n (z)2jz3](1[z0

3b1 > 0]� 1[z0
3b2 > 0])2]1=2

= � c1=2
1 Ej1[z0

3b1 > 0]� 1[z0
3b2 > 0]j � jb1 � b2j2 (A.1)

where k � k2 denotes the L2(P ) norm. Similarly, we can obtain

h(J � 1)p
n E[ sup

b2B :jb� � j2<"
jgn;b(z) � gn;� (z)j2]

=E[h(J � 1)p
n E[j�n (z)j2jz3] sup

b2B :jb� � j2<"
j1[z0

3b > 0]� 1[z0
3� > 0)j2]

�c2E sup
b2B :jb� � j2<"

j1[z0
3b > 0]� 1[z0

3� > 0]j � c0
2" (A.2)

for some c0
2 > 0, sufficiently large n, and all � in a neighborhood of �0.

Next, note that under Assumptions SP8’(ii)-(iv), SP7’, and SP9’(iii), we have

E[gn;b(z)] =
Z
K(v)E[z2(sgn(z0

3b) � sgn(z0
3�0)) jz1 = vhn ]fz1 (vhn )dv

= fz1 (0)E[z2(sgn(z0
3b) � sgn(z0

3�0)) jz1 = 0]

+ h2
n

Z
K(v)v0@2fz1 (� )E[z2(sgn(z0

3b) � sgn(z0
3�0)) jz1 = � ]

@�@� 0
j� =�vvdv

= fz1 (0)E[z2(sgn(z0
3b) � sgn(z0

3�0)) jz1 = 0] + o((nh(J � 1)p
n )2=3) (A.3)

where �v is a point on the line joining 0 and vhn , and the second equality follows from the
dominated convergence theorem and mean value theorem.

Denote Zb = fz3 : sgn(z0
3b) 6= sgn(z0

3�0)g for all b 2 B n f�0g. Following similar
argument used in the proof of Lemma A.4,

�E[z2(sgn(z0
3b) � sgn(z0

3�0)) jz1 = 0] = 2
Z

Z b

sgn(z0
3�0)E[z2jz3; z1 = 0]dFz3 jz1=0

= 2
Z

Z b

jE[z2jz3; z1 = 0] jdFz3 jz1=0 > 0
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Therefore, applying the same argument as Kim and Pollard (1990) pp. 214-215 yields

@
@b
E[z2(sgn(z0

3b)jz1 = 0] jb= � 0 = 0 (A.4)

and

� @2E[z2(sgn(z0
3b) � sgn(z0

3�0)) jz1 = 0]
@b@b0

=
Z

1[z0
3�0 = 0]

�
@
@z3

E[z2jz3; z1 = 0]
� 0

�0z3z0
3fz3 jz1=0 (z3)d�� 0 (A.5)

where �� 0 is the surface measure on the boundary of fz3 : z0
3�0 � 0g.

Putting (A.3), (A.4), and (A.5) together, we have

E[gn;� (z)] =
1



A.2 Dynamic Panel Data Estimators

Here, we only establish regularity conditions and prove consistency of our dynamic panel
data estimator, as consistency for the static model follows as a special case.

Consider the events:

A = fy10 = d0; y11 = 1 ; y12 = 0 ; y13 = d3g
B = fy10 = d0; y11 = 0 ; y12 = 1 ; y13 = d3g

where d0 and d3 are either 0 or 1. In what follows, denote z = ( x0
1(12) ; y1(03))0.

Lemma A.2. Under Assumption DP3, sgn(P (Ajx; �; 
) � P (Bjx; �; 
)) = sgn(z0�0).

Proof of Lemma B.1. By Assmption DP3, we have

P (Ajx; �; 
) = P (y10 = 1 jx; �; 
) d0 (1� P (y10 = 1 jx; �; 
)) 1� d0

� P (x0
11�0 + 0d0 + �1 � �11 > maxfx0

21�0 + �2 � �21;0gjx; �; 
)
� (1� P (x0

12�0 + 0 + �1 � �12 > maxfx0
21�0 + �2 � �22;0gjx; �; 
))

� P (x0
12�0 + �1 � �13 > maxfx0

21�0 + �2 � �23;0gjx; �; 
) d3

� (1� P (x0
12�0 + �1 � �13 > maxfx0

21�0 + �2 � �23;0gjx; �; 
)) 1� d3

and similarly,

P (Bjx; �; 
) = P (y10 = 1 jx; �; 
) d0 (1� P (y10 = 1 jx; �; 
)) 1� d0

� (1� P (x0
11�0 + 0d0 + �1 � �11 > maxfx0

21�0 + �2 � �21;0gjx; �; 
))
� P (x0

12�0 + �1 � �12 > maxfx0
21�0 + �2 � �22;0gjx; �; 
)

� P (x0
12�0 + 0 + �1 � �13 > maxfx0

21�0 + �2 � �23;0gjx; �; 
) d3

� (1� P (x0
12�0 + 0 + �1 � �13 > maxfx0

21�0 + �2 � �23;0gjx; �; 
)) 1� d3

It is not hard to verify that

P (Ajx; �; 
)
P (Bjx; �; 
)

> 1, x0
11�0 + 0d0 > x0

12�0 + 0d3

for each of the 4 cases corresponding to the values of d0 and d3. Then, the desired result
follows.

In what follows, we focus on the case where � � f� = ( b0; g)0 2 Rp+1 : b1 = 1g. The
case with � � f� = ( b0; g)02 Rp+1 : b1 = �1g is symmetric.
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Lemma A.3. Under Assumptions DP3 - DP5, P (sgn(z0�) 6= sgn(z0�0)j
) > 0 for all � 2
� n f�0g.

Proof of Lemma B.2. To prove the statement in the lemma, it suffices to show that for all
� 2 � n f�0g, (i) P (~z0~� 6= ~z0~�0j
) > 0, and (ii) P (x(1)

1(12) 2 Nj~x1(12) ; y10 = d0; y13 = d3; 
) > 0
for all (d0; d3) 2 f0;1g2 and for any proper interval N on the real line.

(i) If g = 0, then P (~z0~� = ~z0~�0j
) = P (~x0
1(12)(~b � ~�0) = 0 j
) < 1 by DP5. For the case

with g 6= 0,

P (~z0~� = ~z0~�0j
)

=
X

d02f 0;1g

Z
P ((g � 0)y13 = ( 0 � g)d0 + ~x0

1(12)( ~�0 � ~b)jy10 = d0; ~x1(12) ; 
)

� P (y10 = d0j~x1(12) ; 
) dF~x1(12) j 


By Assumption DP3, P ((g�0)y13 = ( 0� g)d0 + ~x0
1(12)( ~�0�~b)jy10 = d0; ~x1(12) ; 
) < 1
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Note that the expectation above is strictly positive for almost all z since P(Ajx; �; 
) �
P(B jx; �; 
) = 0 if and only if sgn(z0� 0) = 0 which is an event having zero probability
measure under Assumption DP4. It then follows from Lemma A.3 and Assumption DP6
that Q(� 0) � Q(� ) > 0 for all � 2 � n f � 0g.

To simplify notation, we de�ne

Qn (� ) =
1

nh3p
n

nX

i =1

K (� x i =hn ) i (� )

and
� (�) = f (�)E [ (� )jx2(12) = x2(23) = x1(23) = �]

Proof of Theorem 3.3.The proof proceeds by verifying the following conditions for Theo-
rem 9.6.1 in Amemiya (1985): (C1)� is a compact set, (C2)Qn (� ) is a measurable function
for all � 2 � , (C3) Qn (� ) converges in probability to a nonstochastic function Q(� ) uni-
formly in � 2 � , (C4) Q(� ) is continuous in � and is uniquely maximized at � 0.

The compactness of � is satis�ed by construction. Condition (C2) holds trivially.
Lemma B.3 above has shown that the identi�cation condition in  Tf 5.6-(.)]TJ -33lds



Nolan and Pollard (1987), Fh is Euclidean for the constant envelope supv2 R3p jK(v)j <
1. Furthermore, as F� is Euclidean for the constant envelope sup� 2 � j (�)j = 1 (see
Example 2.11 in Pakes and Pollard (1989)), F is Euclidean for the constant envelope
supv2 R3k jK(v)j <1. Next, note that by Assumptions DP6 and DP8(ii),

sup
F n

EjK(� x=hn ) (�)j = sup
F n

Z
[EjK(� x=hn ) (�)jj� x]f (� x)d� x

= sup
F n

h3p
n

Z
K(v)[Ej (�)jj� x = vhn ]f (vhn )dv

� sup
F n

h3p
n

Z
K(v)f (vhn )dv = O(h3p

n )

Then, under Assumption DP9(ii), we obtain by applying Lemma 5 in Honoré and Kyri-
azidou (2000) that

sup
F n

h3p
n jQn (�) � EQn (�)j = Op

0

@

s
h3p

n logn
n

1

A = op(h3p
n )

Next, we show that sup� 2 � jEQn (�) � Q(�)j = o(1). Notice that by Assumptions DP7,
DP8(ii), DP8(iii), and DP9(i),

sup
� 2 �
jEQn (�) �Q(�)j = sup

� 2 �
j 1

h3p
n

Z
K(� x=hn )�(� x)d� x� �(0)j

= sup
� 2 �
j 1

h3p
n

Z
K(� x=hn )[�(0) + �(1) (�)0� x]d� x� �(0)j

= sup
� 2 �
j�(0)

Z
K(v)dv + hn

Z
K(v)�(1) (vn )0vdv � �(0)j

= sup
� 2 �
jhn

Z
K(v)�(1) (vn )0vdvj

� hn

Z
K(v)j�(1) (vn )j1jvj1dv

= O(hn ) = o(1)

where j � j1 denotes the l1 norm of a vector. Therefore,

sup
� 2 �
jQn (�) �Q(�)j � sup

F n

jQn (�) � EQn (�)j + sup
� 2 �
jEQn (�) �Q(�)j = op(1)

and the desired result follows.
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