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Abstract

We analyze identification in dynamic econometric models of binary choice with fixed
e↵ects under general conditions. This class of models is often used in the literature to
distinguish between state dependence (invariably referred to in the recent literature as



1 Introduction

There has been recent renewed interest in empirical economics in estimating models of dis-

crete choice over time. This is partly motivated by empirical regularities: certain individuals

are more likely to stay with a choice if they have experienced that choice in the past and

this choice “stickiness” has been attributed variably in the literature to inertia or switching

costs. For example, Handel (2013) estimates a model of health insurance choice in a large

firm over time documenting inertia in choices overtime. Dubé, Hitsch, and Rossi (2010)

empirically find that this “inertia” in packaged goods markets is likely caused by brand loy-

alty. Polyakova (2016) studies the important question of quantifying the e↵ect of switching

costs in Medicare Part D markets and its relation to adversely selected plans1. The recent

availability of these panel data in such important markets on the one hand and the central

role that the dynamic discrete choice literature played in econometric theory on the other

provide the main motivation for this paper which is focused on the question of identification

in these models.

The dynamic discrete choice model has appeared prominently in econometrics. In fun-

damental work, Heckman (1981) discusses two di↵erent explanations for the empirical reg-

ularity that an individual is more likely to experience a state after having experienced it in

the past. The first explanation, termed state dependence, is a genuine behavioral response

to occupying the state in the past, i.e., a similar individual who did not experience the state

in the past is less likely to experience it now. The current literature sometimes refers to

state dependence as switching costs, inertia or stickiness and can be thought of as a causal

e↵ect of past occupancy of the state2. The second explanation advanced by Heckman is

heterogeneity, whereby individuals are di↵erent in unobservable ways and if these unobserv-

ables are correlated over time, this will lead to said regularity. This serial correlation in the



Concretely, the binary dynamic panel data model relates a binary outcome in period t,

yt (we abstract from subscripting also by i) to its lagged value yt−1



the sign of � in a model with and without covariates with T = 2, 3. Complementing our



are proven to have informational content in the sense that they result in smaller identified

regions than the model in Section 3.1, yet still more general than the models introduced in

Chamberlain (1985) and Honoré and Kyriazidou (2000). Section 4 considers extensions of

the model to allow for a panel data with a longer time series. Specifically, in 4.1 we add

additional time periods to the panel, exploring the time component’s informational content

by showing how the identified region shrinks when more periods are available. Section 5

compliments our identification results in the previous sections by proposing computation-

ally attractive methods to conduct inference on the structural parameters. This will enable

testing, for example, if there is indeed persistence in the binary variable of interest. Section

6 explores the finite sample properties of our procedures with an empirical application on

female employment status as well as reporting results from simulation studies which explore

how the identified region varies across the di↵erent models considered. Section 7 concludes

with discussions on areas for future research, such as the e↵ect of introducing more choices

available to the agent, by studying a dynamic multinomial choice model with individual and

choice e↵ects, as first introduced in Chamberlain (1984) and more recently in Pakes and

Porter (2014) and Ouyang, Khan, and Tamer (2017).

2 Dynamic Panel Binary Choice Model

Recall our model of the form:

yt = I{ut  x′
t� + �yt−1 + ↵} (2.1)

where ut is an unobserved scalar random variable, xt is an observed k�dimensional vector of

covariates, � denotes an unknown k dimensional vector of regression coe�cients, ↵ denotes

the unobserved scalar individual specific e↵ect. The observed binary variable yt takes the

value 1 if the argument inside the indicator function I{·} is true, and 0 otherwise. Finally,

we let the unknown scalar parameter � denote the measure of persistence in the model.

In what follows we will will explore the identifiability of the unknown parameters �, �,

when making one of the following assumptions about the distribution of u1, u2, . . . , uT :
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we assume that n is large relative to





3.2 Exchangeability with T = 2

In this section, we replace the conditional (on ↵ and x) stationarity assumption with condi-

tional (on ↵, x, y0) exchangeability
6 of idiosyncratic error terms and investigate its identifying

power.

Definition 1. A sequence u1, u2, . . . , uT



u−M , . . . , u0, x−M , . . . , x0, and ↵; and at the same time y0 (the first observable outcome) is

a deterministic function of that history.

Given the above, we analyze the identifying power of the conditional exchangeability of

idiosyncratic error terms ut’s, summarized in the following assumption:

Assumption 3.2. (CEX): u1, . . . , uT are exchangeable conditional on ↵, x, y0.

An even stronger alternative to the stationarity Assumption 3.1





is interesting since the result in Proposition 3.1 provides a characterization of the identified

set in the Manski model without any conditions7 on the support of x.

The next Theorem, whose proof follows, is the main result in this section.

Theorem 3.2. Suppose that Assumption 2.1 holds. Let ⇥{1,2}
I,cex(2) be the set of parameters

that satisfy conditions (1) and (2) of Proposition 3.1. Also let ⇥{1,2}
I,cex(1) satisfy the following

restriction: if for some z = (x, y0)

(1) P (y1 = 1|z) � P (y2 = 1|z) ) (x2 � x1)′�̃ + min{0, �̃} � �̃y0  0;

(2) P (y

1=1

|z)

&
P

(

y1=1

|z)

'
(

x2"

x
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(1) P (y1 = 1, y2 = 0|x, y0) � P (y1 = 0, y



Proof: Although Lemma 3.2 requires us to look at only some sequences (a1, . . . , aT ) and

to match only the distribution of indicator variables y1, . . . , yT



model

ỹt = I{ũt  x′
t�̃ + �̃ỹt−1 + ↵̃, t = 1, 2}

where the distribution F̃ũ,↵̃|z obeys the exchangeability assumption, and where the distribu-

tion of (ỹ0, ỹ1, ỹ2, x



matches P (y1 = 0, y2 = 1|z).



right of



where �1 + �2 + �3 = 1 and dj � 0

A bivariate Fréchet copula is symmetric. If the joint distribution of ũ1 and ũ2 is defined

by a symmetric copula, i.e. if

F̃ũ1,ũ2|z = C̃(F̃, F̃ )

then ũ1 and ũ2 are exchangeable.

Given a solution q1(z), q20(z) and q



Konstantopoulos and Yuan (2018)). Finally, Lemma 3.2 guarantees that there exists F̃ũ,↵̃|z

such that ũ1, . . . , ũt are iid conditional on ↵̃ and z, and by construction,

p(ỹ0, ỹ1, ỹ2, x|✓̃, F̃ũ,↵̃|z) = p(y0, y1, y2, x|✓, Fu,↵|z)

⌅

Finally, to complete the proof of sharpness of ⇥{1,2}
I,cex, we need to show that ✓ is identified

relative to any ✓̃ /2 ⇥{1,2}
I,cex under either conditional exchangeability or conditional iid assump-

tions. Assume that for a given ✓̃ /2 ⇥{1,2}
I,cex e.g. condition (1) of Theorem 3.2 does not hold.

That is, there exists some z = (y0, x) such that

P (y1 = 1|z) � P (y2|z) and (x2 � x1)′�̃ + min{0, �̃} � �̃y0 > 0

However, if there exists F̃ũ,↵̃|z 2 Fcex such that

p(ỹ0, ỹ1, ỹ2, x|✓̃, F̃ũ,↵̃|z) = p(y0, y1, y2, x|✓, Fu,↵|z)

then it must be the case that (see the proof of Lemma 3.3)

(x2 � x1)′�̃ + min{0,  /Ty24 1 Tf (") Tj ET BT 11.9552421.4 350
Tm350.983 Tm /Ty13 1 Tf414y13 1 Tf414y13 1 T 63 178.0 11.9552 424.161 43 /TTf (y Tf (0)y13 1 Tf414y13 1T 11.9
(") Tj 0 Tc ET BT 11.9552 0 0 11.9552 424.596 488.269
Tm
Tf e) 13 1 Tf414j 0 BT 11.955 ET BT 11.95Ty13 1.9552 424.161 488.269 Tm0.272 6 13 1 Tf414 ET BT 0.0006yx



(1) If P (y1 = 1, y2 = 0|x, y0) � 1 � P (y1 = 0, y2 = 1|x̃, ỹ0), then ((x1 � x2) � (x̃1 � x̃2))′� +

�(y0 � ỹ0 � 1) � 0.

(2) If P (y1 = 1, y2 = 0|x, y0) > 1 � P (y1 = 0, y2 = 1|x̃, ỹ0), then ((x1 � x2) � (x̃1 � x̃2))′� +

�(y0 � ỹ0 � 1) > 0.

Remark 3.1. Note that the independence condition of Proposition 3.2 keeps the indepen-

dence assumption from Honoré and Kyriazidou (2000) but relaxes stationarity.

Given that y0, ỹ0 are binary, by looking at (1) and (2) in the Proposition 3.2 above, we

see that only the sign of � will be identified, but we may get some meaningful identification

for �. We can also potentially add more restrictions to shrink the identified set even further.

For example, if we assume that Med(u1 � u2|x, y0) = 0, then the following must hold for any

x, y0 in the support:

(1) If P (y1 = 1, y2 = 0|x, y0) � 0.5, then (x1 � x2)′� + �(y0 � 1) � 0.

(2) If P (y1 = 0, y2 = 1|x, y0) � 0.5, then (If





Theorem 3.1



where for j = 1, 2, 9, 10:

mj = inf
�x∈�Xj

�x′�, Mj = sup
�x∈�Xj

�x′�

.

Note that the identification of the sign of � in this result does not rely on � being point

identified. However, when the sign of � is identified, we can weaken Assumption 3.4. In

particular, if � is positive, then we can replace X7 and X8 in Assumption 3.4 with X3 [ X7

and X4



with additional conditions on observed regressors. Again, we define the following sets:

�X1(y0



(2) If �X2(0) [ �X4





(11) P (y2



Remark 4.1. When x2 = x3, restrictions for event pairs {(0, 1, 0), (1, 0, 0)} and {(0, 1, 1), (1, 0, 1)}
in Table 3 reduce to the following set:

(1) If (x1 � x2)′� + �(y0 � 1) � 0, then p3(1, 0, 1|↵, x, y0) � p3(0, 1, 1|↵, x, y0)

(2) If (x1 � x2)′� + �(y0 � 1)  0, then p3(1, 0, 1|↵, x, y0)  p3(0, 1, 1|↵, x, y0)

(3) If (x1 � x2)′� + �y



(6) P (y2 = 1, y3 = 0|x, y0) � P (y1 = 0|x, y0) ) (x3 � x1)′� + � � �y0  0.

Finally, let ⇥{2,3}
I,cex(1) satisfy the restrictions for ⇥{2,3}

I,stat in Theorem 4.1, only with the con-

ditional on x probabilities replaced by the conditional on z = (x, y0) probabilities. Then

⇥T =3
I,cex = ⇥{1,2,3}

I,cex \⇥{1,2}
I,cex(1)\⇥{2,3}

I,cex(1)\⇥{1,3}
I,cex(1) is the sharp identified set for ✓ under either

Assumption 3.2 (exchangeability) or Assumption 3.3 (conditional independence).

Here the intersection of sets ⇥{1,2}
I,stat, ⇥{2,3}

I,stat and ⇥{1,3}
I,stat gives us the set of parameters that

are observationally equivalent to the true parameter under the assumption that u1, u2 and

u3 are identically distributed conditional on x, y0, and ↵. Set ⇥{1,2,3}
I,cex gives us the set of

parameters that are observationally equivalent to the true parameter under conditional (on

x, y0, and ↵) exchangeability of u1, u2, u3. Note that unlike the case with T = 2, some of

the exchangeability restrictions are not implied but any of the stationarity restrictions. For

example, exchangeability-based restriction 1.a in Table 3 is a stronger version the following

stationarity-based restriction for ⇥{2,3}
I,cex(1):

P (y1 = 0, y2 = 0|x, y0) � P (y3 = 0|x, y0) ) (x3 � x2)′� + max{0, �} � 0

and so on.

4.2 Point Identification with T = 3

In this section we provide su�cient conditions for point identification of the parameters �, �

under the stationarity and exchangeability assumptions in the case for T = 3. Point identi-

fication under stationarity will rely on the result in Theorem 4.1, while point identification

under exchangeability will be based on Theorem 4.2.

We start with point identification under stationarity. Theorem 4.1 provides 6 conditions

that involve � only, so we can use these conditions to point identify � in a similar way we
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did for T = 2. In particular, we define the following sets

X {1,2}
7 = {x 2 X such that P (y





stationarity restriction (i.e. condition (9) in 4.2 holds), then the sign of � is also be identified

under the exchangeability restriction (condition (3) in 4.3 holds), but the reverse is not true.

When T = 3, it is sometimes possible to identify the sign of � even when � is positive

(unlike in T = 2 case). We start with stationarity Assumption 3.1: under that assumption,

the sharp identified set for � and � is given by Theorem 4.1. In the absence of covariates, this

result (in addition to the restrictions on � described above for T = 2) places the following

restrictions based on set ⇥{1,3}
I,stat:

(9) : P (y0 = 1, y1 = 0) + P (y2 = 0, y3 = 1) � 1 ) �  0

(10) : P (y0 = 0, y1 = 1) + P (y2 = 1, y3 = 0) � 1 ) �  0

(11) : P (y0 = 1, y1 = 1) + P (y2 = 0, y3 = 0) � 1 ) � � 0

(12) : P (y0 = 0, y1 = 0) + P (y2 = 1, y3 = 1) � 1 ) � � 0

(4.4)

and based on set ⇥{2,3}
I,stat:

(9) : P (y1 = 1, y2 = 0) + P (y2 = 0, y3 = 1) � 1 ) �  0

(10) : P (y1 = 0, y2 = 1) + P (y2 = 1, y3 = 0) � 1 ) �  0
(4.5)





and

p̂z(y0, x) =
1

n

X

i

1{y0i = y0, xi





5.2.1 Linear Program for solving Model (5.2):

Conditions (5.2) are straightforward to verify for a given ~p(·) 2 CSp
1−↵. The following is an



Mn(x,



especially if the vector � is of high dimensions.

5.2.2 Linear Program for solving Model (5.3)

Now, building a CS for ✓ in the exchangeable model of (5.3) is more complicated since

checking that both ��x′� + �y



8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1{P(k)(y1 = 1, y

y



income, hincit, is in dollar per month and is positive for all i and t. There are also time-



inference section above and obtain a confidence region, we require that one obtains draws

from the confidence region of the choice probabilities in (5.1) above. One computationally

automatic way to get such draws is to use the Bayesian bootstrap which is equivalent to

drawing from the posterior distribution of a multinomial with the usual Dirichlet priors9.

For each draw from this posterior, we solve the linear program for min / max of the scalar

a



mainly tied to establishing the empirical content of varying assumptions in dynamic binary

choice models.

In establishing our theoretical results we reached the following conclusions regarding

identifying the structural parameters in the model:

• Regression coe�cients on strictly exogenous variables were generally easier to identify

than the coe�cient on the lagged binary dependent variable, which was our measure

of the persistence in the model.

• Restricting dependence structure on the idiosyncratic components of the model facili-

tated identification of the structural parameters.

• Increasing the richness of the support of the exogenous variables facilitates the identi-

fication.

•



We demonstrate identification graphically with projections of three dimensional plots of

our objective function. Specifically we look at values of the objective function of di↵erent

values of � and � along a grid of a two dimensional plane. Instead of constructing three

dimensional plots, we show values of the parameters which attain the global maximum of the

objective function. The objective functions used corresponded to the moment inequalities

used in the main theorems. In models where point identification is attainable, a single value

will be in the plot, whereas in partially identified models, a subset of the grid will be plotted.

6.2.1 Stationary Model, T=2

In this model we simulated data where vit, xit were each discretely distributed, with the

number of support points for vit, increasing from 2 to 7, and then continuously (standard

normal) distributed. The number of support points for xit was always two, though there

where two distinct designs- one with identical support in each time period, and the other

with strictly nonoverlapping support- xit = t t = 1, 2. The idiosyncratic terms uit were

bivariate normal, mean 0 variance 1, correlation 0.5, and the fixed e↵ect ↵i was standard

normal. We assumed that all variables were mutually independent. The parameters where

set to 1 for � and either 0.5 or -0.5 for �.

Our plots for this model agree with our theoretical results. We note that when xit, vit

are discrete, neither parameter is point identified. For example, in Figure 2, we have x is

binary while v starts out as binary and then we add points of support ending with 14. This

Figure is repeated for when true � is negative. As we can see the identified set is not trivial.

Its size shrinks in Figure 4 when v is normally distributed with increasing variance. Notice

here that in all the plots, � appears well identified.

In Figure 6, we change x to a time trend (x = t) and in the top lhs plot, we have the

identified set in the case when v is binary. Here, we cannot pin down the sign of �. But, as

we increase the points of support for v, the identified set shrinks and eventually it appears

that the sign of � is identified. The same story holds for when � is negative. The next

Figures allow for time trend in the case when v is normal.

Throughout, when vit is continuously distributed, � is point identified, whereas � is not.

But the graph clearly demonstrates that its sign is.
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the case when there was strictly nonoverlapping support conditions on xit. In particular,

Figure 17 shows that the identified set is essentially a point when v is normal, but � is not

point identified when both v and x are discrete.

7 Conclusion

This paper analyzes the identification of slope parameters in panel binary response models

with lagged dependent variables under minimal assumptions. In particular, we consider sta-

tionarity and exchangeability and characterize the identified set under these two restrictions

without making any assumptions on the fixed e↵ect. We show that the characterization

yields the sharp set. In addition, we provide su�cient conditions for point identification

even in models that have time trends as regressors, which is ruled out in Honoré and Kyri-

azidou (2000). The analysis is interesting and highlights the interplay between the strength

of the assumptions, the number of time periods and the support of the exogenous regressors.

Overall, we generalize many existing results for this model in interesting directions.
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A Figures

Figure 2: Stationary with T = 2 and Discrete Support with � = .5
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Figure 3: Stationary with T = 2 and Discrete Support with � = .5
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Figure 4:



Figure 5: Stationary with T = 2 and Normal v with � = −.5
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Figure 6: Stationary with T = 2 and Time Trend and Discrete Support for v with � = .5
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Figure 7: Stationary with T = 2 and Time Trend and Discrete Support for v with � = −.5
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Figure 8: Stationary with T = 2 and Time Trend and Normal v with � = .5
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Figure 9: Stationary with T = 2 and Time Trend and Normal v with � = −.5
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Figure 10: Exchangeability with T = 2 Discrete Support for v with � = .5
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Figure 11: Stationary with T = 2 Discrete Support for v with � = −.5
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Figure 12: Exchangeability with T = 2 Discrete v with � = .5
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Figure 13: Stationary with T = 2 Normal for v with � = −.5
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Figure 14: Exchangeability with T = 2 x = t Discrete v with � = .5
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Figure 16: Stationarity with T=3: Various Designs
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B Proof

B.1 Proof of Lemma 3.1

Since (u�M , . . . , u0, u1, . . . , uT ) is exchangeable conditional on ↵, x−M , . . . , x0, x1, . . . , xT , The-



be the marginal distribution of vt for t = 1, 2, conditional on x. The following are sharp



and F̃ (·|x) is the conditional distribution of some ṽt. Let ↵̃ be some scalar random variable

(or even a constant), and define ˜



To sum up, for all x, y0 in the support we have the following:

P (y1 = 1, y2 = 0|x, y0)  F12((x1 � x2)′� + �(y0 � 1))

F12((x1 � x2)′� + �y0)  1P (y1 = 0, y2



when the sign of � can be identified. First note that if � � 0, then Theorem 3.1 implies that

�



B.4 Proof of Theorem 3.4



restrictions for v2. In particular, ⇥{2,3}
I,stat is given by the restrictions: if for some x,

(1) P (y3 = 1|x) � P (y2 = 1|x) ) (x3 � x2)′� + |�| � 0;

(2) P (y2 = 1|x) � P (y3 = 1|x) ) (x3 � x2)′� � |�|  0;

(3) P (y2 = 0, y3 = 1|x) � P (y2 = 1|x) or P (y1 = 1, y2 = 0|x) � P (y3 = 0|x) ) (x

PP(
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