
INTERDISTRICT SCHOOL CHOICE: A THEORY OF STUDENT ASSIGNMENT y

ISA E. HAFALIR, FUHITO KOJIMA, AND M. BUMIN YENMEZ �

Abstract. Interdistrict school choice programs|where a student can be assigned to a

school outside of her district|are widespread in the US, yet the market-design literature

has not considered such programs. We introduce a model of interdistrict school choice and

present two mechanisms that produce stableor e�cient assignments. We consider three cate-

gories of policy goals on assignments and identify when the mechanisms can achieve them.

By introducing a novel framework of interdistrict school choice, we provide a new avenue

of research in market design.

1. Introduction

School choice is a program that uses preferences of children and their parents over pub-

lic schools to assign children to schools. It has expanded rapidly in the United States and

many other countries in the last few decades. Growing popularity and interest in school

choice stimulated research in market design, which has not only studied this problem in

the abstract, but also contributed to designing speci�c assignment mechanisms. 1

Existing market-design research about school choice is, however, limited to intradistrict

choice, where each student is assigned to a school only in her own district. In other words,

the literature has not studied interdistrict choice, where a student can be assigned to a

school outside of her district. This is a severe limitation for at least two reasons. First,

interdistrict school choice is widespread: some form of it is practiced in 43 U.S. states. 2

Second, as we illustrate in detail below, many policy goals in school choice impose con-

straints across districts in reality, but the existing literature assumes away such constraints.

This omission limits our ability to analyze these policies of interest.
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Figure 1. Minnesota-Saint Paul metro area school districts participating in
the AI program. The districts with the same color are adjoining districts that
exchange students with one another.

rationality and strategy-proofness. 8 We �rst demonstrate an impossibility result; when the

diversity policy is given as type-speci�c ceilings at the district level, there is no mechanism

that satis�es the policy goal, constrained e�ciency, individual rationality, and strategy-

proofness. By contrast, a version of the top trading cycles (TTC) mechanism (Shapley and

Scarf, 1974) satis�es these properties when the policy goal satis�es M-convexity, a concept

in discrete mathematics (Murota, 2003). We proceed to show that the balanced-exchange

policy and an alternative form of diversity policy|type-speci�c ceilings at the individual

school level instead of at the district level|are M-convex, so TTC satis�es the desired

properties for these policies. The same conclusion holds even when both of these policy

goals are imposed simultaneously.

8Without individual rationality, all the other desired properties can be attained by a serial dictatorship.
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We also consider the case when there is a policy function that measures how well a

matching satis�es the policy goal. For example, diversity of a matching can be measured

as its distance to an ideal distribution of students. We show that TTC satis�es the same

desirable properties when the policy function satis�es pseudo M-concavity, a notion of con-

cavity for discrete functions that we introduce. Furthermore, we show that there is an

equivalence between two approaches based on the M-convexity of the policy set and the

pseudo M-concavity of the policy function. Therefore, both results can naturally be ap-

plied in di�erent settings depending on how the policy goals are stated.

Related Literature. Our paper is closely related to the controlled school choice literature

that studies student diversity in schools in a given district. Abdulkadiro �glu and S•onmez

(2003) introduce a policy that imposes type-speci�c ceilings on each school. This policy

has been analyzed by Abdulkadiro �glu (2005), Ergin and S•onmez (2006), and Kojima (2012),

among others. More accommodating policies using reserves rather than type-speci�c ceil-

ings have been proposed and analyzed by Hafalir et al. (2013) and Ehlers et al. (2014). The

latter paper �nds di�culties associated with hard oor constraints, an issue further an-

alyzed by Fragiadakis et al. (2015) and Fragiadakis and Troyan (2017).9 In addition to

sharing the motivation of achieving diversity, our paper is related to this literature in that

we extend the type-speci�c reserve and ceiling constraints to district admissions rules. In

contrast to this literature, however, our policy goals are imposed on districts rather than

individual schools, which makes our model and analysis di�erent from the existing ones.

The feature of our paper that imposes constraints on sets of schools (i.e., districts),

rather than individual schools, is shared by several recent studies in matching with con-

straints. Kamada and Kojima (2015) study a model where the number of doctors who can

be matched with hospitals in each region has an upper bound constraint. Variations and

generalizations of this problem are studied by Goto et al. (2014, 2017), Biro et al. (2010),

and Kamada and Kojima (2017, 2018), among others. While sharing the broad interest in

constraints, these papers are di�erent from ours in at least two major respects. First, they

do not assume a set of hospitals is endowed with a well-de�ned choice function, while

each school district has a choice function in our model. Second, the policy issues studied

in these papers and those studied in ours are di�erent given di�erences in the intended

applications. These di�erences render our analysis distinct from those of the other papers,

with none of their results implying ours and vice versa.

One of the notable features of our model is that district admissions rules do not nec-

essarily satisfy the standard assumptions in the literature, such as substitutability, which

9In addition to the works discussed above, recent studies on controlled school choice and other two-
sided matching problems with diversity concerns include Westkamp (2013), Echenique and Yenmez (2015),
S•onmez (2013), Kominers and S•onmez (2016), Dur et al. (2014), Dur et al. (2016), and Nguyen and Vohra
(2017).
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guarantee the existence of a stable matching. In fact, even a seemingly reasonable district

admissions rule may violate substitutability because a district can choose at most one con-

tract associated with the same student|namely just one contract representing one school

that the student can attend. Rather, we make weaker assumptions following the approach

of Hat�eld and Kominers (2014). This issue is playing an increasingly prominent role in

matching with contracts literature; for example, in matching with constraints (Kamada

and Kojima, 2015), college admissions (Ayg•un and Turhan, 2016; Yenmez, 2018), and post-

graduate admissions (Hassidim et al., 2017), to name just a few.

Our analysis of Pareto e�cient mechanisms is related to a small but rapidly growing

literature that uses discrete optimization techniques for matching problems. Closest to

ours is Suzuki et al. (2017), who show that a version of the TTC mechanism satis�es desir-

able properties if the constraint satis�es M-convexity. 10 Our analysis on e�ciency builds

upon and generalizes theirs. While the use of discrete convexity concepts for studying ef-

�cient object allocation is still rare, it has been utilized in an increasing number of match-

ing problems such as two-sided matching with possibly bounded transfer (Fujishige and

Tamura, 2006, 2007), matching with substitutable choice functions (Murota and Yokoi,

2015), matching with constraints (Kojima et al., 2018a), and trading networks (Candogan

et al., 2016).

There is also a recent literature on segmented matching markets in a given district. Man-

junath and Turhan (2016) study a setting where di�erent clearinghouses can be coordi-

nated, but not integrated, in a centralized clearinghouse and show how a stable matching

can be achieved. In a similar setting, Dur and Kesten (2018) study sequential mechanisms

and show that these mechanisms lack desired properties. In another work, Ekmekci and

Yenmez (2014) study the incentives of a school to join a centralized clearinghouse. In con-

trast to these papers, we study which interdistrict school choice policies can be achieved

when districts are integrated.

At a high level, the present paper is part of research in resource allocation under con-

straints. Real-life auction problems often feature constraints (Milgrom, 2009), and a great
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that we also analyze|while modeling exchanges of members of di�erent institutions un-

der constraints. Although the di�erences in the model primitives and exact constraints

make it impossible to directly compare their studies with ours, these papers and ours

clearly share broad interests in designing mechanisms under constraints.

The rest of the paper is organized as follows. Section 2 introduces the model. In Sections

3 and 4, we study when the policy goals can be satis�ed together with stability and con-

strained e�ciency, respectively. Section 5 concludes. Additional results, examples, and

omitted proofs are presented in the Appendix.

2. Model

In this section, we introduce our concepts and notation.

2.1. Preliminary De�nitions. There exist �nite sets of students S, districts D, and schools

C. Each student s and school c has a home district denoted by d(s) and d(c), respectively.

Each student s has a type � (s) that can represent di�erent aspects of the student such as

the gender, race, socioeconomic status, etc. The set of all types is �nite and denoted by T .

Each schoolc has a capacityqc, which is the maximum number of students that the school

can enroll. There exist at least two school districts with one or more schools. For each

district d, kd is the number of students whose home district is d. In each district, schools

have su�ciently large capacities to accommodate all students from the district, i.e., for

every district d, kd �
P

c:d(c)= d qc. For each type t, kt is the number of type- t students.
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associated with s. Furthermore, we assume that the outside option is the least preferred

outcome, so for every contract x associated with s, x Ps ; . The corresponding weak order

is denoted by Rs. More precisely, for any two contracts x; y associated with s, x Rs y if

x Ps y or x = y.

A matching is a set of contracts. A matching X is feasible for students if there exists

at most one contract associated with every student in X . A matching X is feasible if it

is feasible for students and the number of contracts associated with every school in X is

at most its capacity, i.e., for any c 2 C, jX cj � qc. We assume that there exists a feasible

initial matching ~X such that every student has exactly one contract.12 For any student s,

if ~X s = f (s; d; c)g for some district d and school c, then c is called the initial school of s.

A problem is a tuple (S; D; C; T ; f d(s); � (s); Psgs2S ; f Chdgd2D ; f d(c); qcgc2C; ~X ). In what
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jChd(X )j � j Chd(Y)j.14 A completion of a district admissions rule Chd is another admis-

sions rule Ch0
d such that for every matching X either Ch0

d(X ) is equal to Chd(X ) or it is

not feasible for students (Hat�eld and Kominers, 2014). Throughout the paper, we assume

that district admissions rules have completions that satisfy substitutability and LAD. 15 In

Appendix B, we provide classes of district admissions rules that satisfy our assumptions.

2.3. Matching Properties, Policy Goals, and Mechanisms. A feasible matching X satis-

�es individual rationality if every student weakly prefers her outcome in X to her initial

school, i.e., for every student s, X s Rs
~X s.

A distribution � 2 Z jCj�jT j
+ is a vector such that the entry for school c and type t is

denoted by � t
c. The entry � t

c is interpreted as the number of type- t students in school c at

� . Furthermore, � t
d �

P
c:d(c)= d � t

c denotes the number of type- t students in district d at � .

Likewise, for any feasible matching X , the distribution associated with X is � (X ) whose

c; t entry � t
c(X ) is the number of type- t students assigned to schoolc at X . Similarly, � t

d(X )

denotes the number of type- t students assigned to district d at X .

We represent a distributional policy goal as a set of distributions. Let � denotey
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mechanism � is denoted as � s(PS). A mechanism � satis�es strategy-proofness if no stu-

dent can misreport her preferences and get a strictly more preferred contract. More for-

mally, for every student s and preference pro�le PS, there exists no preferenceP0
s such that

� s(P0
s; PSnf sg) Ps � s(PS). For any property on matchings, a mechanism satis�es the prop-

erty if, for every preference pro�le, the matching produced by the mechanism satis�es the

property.

3. Achieving Policy Goals with Stable Outcomes

To achieve stable matchings with desirable properties, we use a generalization of the

deferred-acceptance mechanism of Gale and Shapley (1962).

Student-Proposing Deferred Acceptance Mechanism (SPDA).

Step 1: Each student s proposes a contract (s; d; c) to district d where c is her most

preferred school. Let X 1
d denote the set of contracts proposed to district d. District

d tentatively accepts contracts in Chd(X 1
d ) and permanently rejects the rest. If there

are no rejections, then stop and return [ d2D Chd(X 1
d ) as the outcome.

Step n (n (deferred.
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the school's capacity while ignoring the contracts of the students who have already been

accepted atc1. Likewise, district d2 prioritizes students according to the order s3 � s4 �

s1 � s2 and chooses as many applicants as possible without going over the capacity of

school c3. These admissions rules are feasible and acceptant, and they have completions

that satisfy substitutability and LAD. 16 In addition, student preferences are given by the

following table,
Ps1 Ps2 Ps3 Ps4

c1 c3 c1 c2

c2 c1 c2 c1

c3 c2 c3 c3

which means that, for instance, student s1 prefers c1 to c2 to c3.

In this problem, SPDA runs as follows. At the �rst step, student s1 proposes to dis-

trict d1 with contract (s1; c1), student s2 proposes to district d2 with contract (s2; c3), stu-

dent s3 proposes to district d1 with contract (s3; c1), and student s4 proposes to district d1
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If individual rationality is violated so that some students prefer their initial schools to

the outcome of SPDA, then there may be public opposition that harm interdistrict school

choice e�orts. For this reason, individual rationality is a desirable property for policymak-

ers. The following condition proves to play a crucial role for achieving this property.

De�nition 1.
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always accepted. With this modi�cation, it is easy to check that the outcome of SPDA is

f (s1; c1); (s2; c3); (s3; c2); (s4; c2)g. This matching satis�es individual rationality. �

In some school districts, each student gets a priority at her neighborhood school, as in

this example. In the absence of other types of priorities, neighborhood priority guarantees

that SPDA satis�es individual rationality.

3.2. Balanced Exchange. For an interdistrict school choice program, maintaining a bal-

ance of students incoming from and outgoing to other districts is important. To formalize

this idea, we say that a mechanism satis�es the balanced-exchangepolicy if the number

of students that a district gets from the other districts and the number of students that

the district sends to the others are the same for every district and for every pro�le of stu-

dent preferences. Since district choice rules are acceptant, every student is matched with

a school under SPDA. Therefore, for SPDA, this policy is equivalent to the requirement

that the number of students assigned to a district must be equal to the number of students

from that district.

The balanced-exchange policy is important because the funding that a district gets de-

pends on the number of students it serves. Therefore, an interdistrict school choice pro-

gram may not be sustainable if SPDA does not satisfy the balanced-exchange policy. For

achieving this policy goal, the following condition on admissions rules proves important.

De�nition 2. A matchingX is rationed if, for every districtd, it does not assign strictly more

students to the district than the number of students whose home district isd. A district admissions

rule is rationed
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rationed. Conversely, when there exists one district with an admissions rule that fails to

be rationed, then we can construct student preferences such that this district is matched

with strictly more students than the number of students from the district in SPDA, which

means that the outcome does not satisfy the balanced-exchange policy.

Now we illustrate SPDA when district admissions rules are rationed.

Example3. Consider the problem in Example 1. Recall that in this problem, the SPDA

outcome is f (s1; c2); (s2; c3); (s3; c1); (s4; c2)g. Since there are three students matched with

district d1 and there are only two students from that district, SPDA does not satisfy

the balanced-exchange policy. This is consistent with Theorem 2 because the admis-

sions rule of district d1 is not rationed. In particular, Chd1 (f (s1; c2); (s3; c1); (s4; c2)g) =

f (s1; c2); (s3; c1); (s4; c2)g, so district d1 accepts more students than the number of students

from there given a matching that is feasible for students.

Suppose that we modify the admissions rule of district d1 as follows. If the dis-

trict chooses a contract associated with school c1, then at most one contract associated

with school c2 is chosen. Therefore, the district never chooses more than two con-

tracts, which is the number of students from there. Therefore, the updated admis-

sions rule is rationed. 18 With this change, it is easy to check that the SPDA outcome is

f (s1; c2); (s2; c3); (s3; c1); (s4; c3)g, which satis�es the balanced-exchange policy. �

An implication of Theorems 1 and 2 is that SPDA is guaranteed to satisfy individual

rationality and the balanced-exchange policy if, and only if, each district's admissions rule

respects the initial matching and is rationed.

3.3. Diversity. The third policy goal we consider is that of diversity. More speci�cally,

we are interested in how to ensure that there is enough diversity across districts so that

the student composition in terms of demographics does not vary too much from district

to district.

We are mainly motivated by a program that is used in the state of Minnesota. State law

in Minnesota identi�es racially isolated (relative to one of their neighbors) school districts

and requires them to be in the Achievement and Integration (AI) Program. The goal is to in-

crease the racial parity between neighboring school districts. We �rst introduce a diversity

policy in the spirit of this program: Given a constant � 2 [0; 1], we say that a mechanism

satis�es the � -diversity policy if for all preferences, districts d and d0, and type t, the dif-

ference between the ratios of type-t students in districts d and d0 is not more than � . We

interpret � to be the maximum ratio di�erence tolerated under the diversity policy; for

instance, � = 0:2 for Minnesota.
18In Appendix B.3, we construct a class of rationed district admissions rules that includes this admissions

rule as a special case. These admissions rules are feasible and acceptant, and they have completions that
satisfy substitutability and LAD.
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We study admissions rules such that SPDA satis�es the � -diversity policy when there

is interdistrict school choice. Since this policy restricts the number of students across dis-

tricts, a natural starting point is to have type-speci�c ceilings at the district level. However,

it turns out that type-speci�c ceilings at the district level may result in district admissions

rules resulting in no stable matchings (see Theorem 9 in Appendix A.2).

Since there is an incompatibility between district-level type-speci�c ceilings and the ex-

istence of a stable matching, we impose type-speci�c ceilings at the school level as follows.

De�nition 3. A district admissions ruleChd has a school-level type-speci�c ceiling of qt
c at

schoolc for type-t students if the number of type-t students admitted cannot exceed this ceiling.

More formally, for any matchingX that is feasible for students,

jf x 2 Chd(X )j� (s(x)) = t; c (x) = cgj � qt
c.

Note that district admissions rules typically violate once school-level type-speci�c ceil-

ings are imposed. This is because a student can be rejected from a set that is feasible for

students even when the number of applicants to each school is weakly smaller than its

capacity and the number of applicants to the district is weakly smaller than the number

of students from that district. Given this, we de�ne a weaker version of the acceptance

assumption as follows.

De�nition 4. A district admissions ruleChd that has school-level type-speci�c ceilings isweakly

acceptant if, for any contractx associated with a type-t student and districtd and matchingX

that is feasible for students, ifx is rejected fromX , then atChd(X ),

� the number of students assigned to schoolc(x) is equal toqc(x) , or

� the number of students assigned to districtd is at leastkd, or

� the number of type-t students assigned to schoolc(x) is at leastqt
c.
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students because an unmatched student's application to her initial school is always ac-

cepted. Lemma 2 in Appendix D shows that when district admissions rules accommodate

unmatched students, every student is matched to a school in SPDA.

In general, accommodation of unmatched students may be in conict with type-speci�c

ceilings because there may not be enough space for a student type when ceilings are small

for this type. To avoid this, we assume that type-speci�c ceilings are high enough so that

(Chd)d2D accommodate unmatched students.19
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Both of these optimization problems belong to a special class of linear-programming

problems called a minimum-cost ow problem, and many computationally e�cient algo-

rithms to solve it are known in the literature. 20 A straightforward but important observa-

tion is that p̂t
d (resp. q̂t

d) is exactly the lowest (resp. highest) number of type- t students who

can be matched to district d in a legitimate matching (Lemma 3 in Appendix D). Given

this observation, we call p̂t
d the implied oor and q̂t

d the implied ceiling .

Now we are ready to state the main result of this section.

Theorem 3. Suppose that each district admissions rule has school-level type-speci�c ceilings and is

rationed and weakly acceptant. Moreover, suppose that the district admissions rules accommodate

unmatched students. SPDA satis�es the� -diversity policy if, and only if,̂qt
d=kd � p̂t

d0=kd0 � � for

every typet and districtsd; d0such thatd 6= d0.

The proof of this th -17.31tand districts
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Consider the case where the mechanism produces matching X at the above student

preference pro�le. Suppose student s3
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Figure 2. Illustration of M-convexity

Example5. Consider the problem and the set of distributions � de�ned in Example 4. We

show that � is not M-convex. Recall matchings X and X 0in that example. By construction,

both X and X 0satisfy the policy goal � . Furthermore, � t1
c3

(X ) = 1 > 0 = � t1
c3

(X 0) because (i)

school c3 is matched with student s4 at X , whose type is t1, while (ii) school c3 is matched

with student s5 at X 0, whose type is t2 6= t1. If the set of distributions � is M-convex, there

exist a schoolcand a type t such that � t
c(X ) < � t

c(X
0) and � (X ) � � c3 ;t 1 + � c;t is in � . Because

each school's capacity is one, and at matchingX all schools have �lled their capacities, this

means that the only candidate for (c; t) satisfying the above condition is such that c = c3.

But the only nonzero � t
c3

(X 0) is for t = t2 (corresponding to s5 matched with c3 at X 0), and

� (X ) � � c3 ;t 1 + � c3 ;t 2 does not satisfy the policy goal because district d1's ceiling for type t2

is violated (note � t2
c2

(X ) = 1 because students2 is matched with c2 at X .)

The above argument implies that � \ � 0 is not M-convex either. To see this, note that

both � (X ) and � (X 0) are in � \ � 0 because all students are matched. Because we have

shown that no distribution of the form � (X ) � � c3 ;t 1 + � c;t is in � , by set inclusion relation

� \ � 0 � � , there is no distribution of the form � (X ) � � c3 ;t 1 + � c;t in � \ � 0 either. �
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c; c0 2 C, and (c0; t) ~Ps (c; t0) for any c 2 C and t0 2 T such that t0 6= t. That is, ~Ps is a

preference order over school-type pairs that ranks the school-type pairs in which the type

is t in the same order as in Ps, while �nding all school-type pairs specifying a di�erent
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The main result of this section is as follows.

Theorem 5. Suppose that the initial matching satis�es the policy goal� . If � \ � 0 is M-convex,

then TTC satis�es the policy goal� , constrained e�ciency, individual rationality, and strategy-

proofness.

The assumption that the initial matching satis�es the policy goal is necessary for the

result: Consider student preferences such that each student's highest-ranked school is

her initial school. Then the initial matching is the unique individually rational matching.

Therefore, if there exists a mechanism with the desired properties, then the outcome at

this preference pro�le has to be the initial matching. Hence, we need the assumption that

the initial matching satis�es the policy goal to have such a mechanism.

To see one of the implications of this theorem, suppose that the policy goal � is such that

no school is matched with more students than its capacity. In that case, if � is M-convex,

then TTC satis�es the desirable properties.

Corollary 1. Suppose that the policy goal� is such that for every� 2 � andc 2 C,
P

t � t
c � qc.

Furthermore, suppose that the initial matching satis�es� . If � is M-convex, then TTC satis�es the

policy goal� , constrained e�ciency, individual rationality, and strategy-proofness.

In the proof of this corollary, we show that when � is M-convex and no distribution in �

assigns more students to a school than its capacity, then� \ � 0 is also M-convex. Therefore,

the corollary follows directly from Theorem 5.

Next we illustrate TTC with an example.

Example 6. Consider a problem with two school districts, d1 and d2. District d1

has school c1 with capacity three and school c2 with capacity two. District d2 has

school c3 with capacity two and school c4 with capacity one. There are seven stu-

dents: students s1, s2, s3, and s4 are from district d1 and have type t1, whereas stu-

dents s5, s6, and s7 are from district d2 and have type t2. The initial matching is

f (s1; c1); (s2; c1); (s3; c2); (s4; c2); (s5; c3); (s6; c3); (s7; c4)g. Student preferences are as fol-

lows.

Ps1 Ps2 Ps3 Ps4 Ps5 Ps6 Ps7

c2 c3 c4 c2 c1 c4 c2

c3 c1 c2 c3 c2 c1 c3
...

...
... c1 c3 c3 c1

c4 c4 c2 c4

In addition to the school capacities, there is only one additional constraint that school

c1 cannot have more than one type-t2 student. As we show in the proof of Corollary 2, the
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set of distributions that satisfy this policy goal and the requirement that every student is

matched is an M-convex set. Therefore, by Theorem 5, TTC satis�es constrained e�ciency,

individual rationality, strategy-proofness, and the policy goal.

To run TTC, we use a master priority list. Suppose that the master priority list ranks

students as follows: s1 � s2 � s3 � s4 � s5 � s6 � s7.

At Step 1 of TTC, there are eight school-type pairs. Consider (c1; t1). Initially, students

s1 and s2 are matched with it, so they are both permissible to this pair. We use the master

priority list to rank them, so s1 gets the highest priority at (c1; t1). Therefore, (c1; t1) points

to s1. Now consider (c1; t2). Initially, it does not have any students because there is no

type-t2 student assigned to c1 in the original problem. Furthermore, s1 is permissible to

(c1; t2) because she can be removed from(c1; t1) and a type-t2 student can be assigned to

(c1; t2) without violating the school capacities or the policy goal. Therefore, (c1; t2) points

to s1 as well, who gets a higher priority than the other permissible students because of

the master priority list. The rest of the pairs also point to the highest-priority permissible

students. Each student points to the highest ranked school-type pair of the same type as

shown in Figure 3A. There is only one cycle: s7 ! (c2; t2) ! s3 ! (c4; t1) ! s7. Therefore,

s7 is matched with (c2; t2) and s3 is matched with (c4; t1).

At Step 2, there are six remaining school-type pairs: There are no permissible students

for (c4; t1) and (c4; t2) becausec4 has a capacity of one and it is already assigned to s3.

Each remaining school-type pair points to the highest-ranked remaining permissible stu-

dent. Each student points to the highest-ranked remaining school-type pair (see Figure

3B). There is only one cycle:s4 ! (c2; t1) ! s4. Hence,s4 is assigned to (c2; t1).

The algorithm ends in �ve steps. Steps 3 and 4 are also shown in Figure 3. In Step 5, s2

points to (c1; t1), which points back to the student. The outcome of the algorithm is

f (s1; c3); (s2; c1); (s3; c4); (s4; c2); (s5; c1); (s6; c3); (s7; c2)g:

It can be easily seen that the distribution associated with this matching satis�es the

policy goal because no school has more students than its capacity and c1 has only one

type-t2 student. �

Sometimes it may be more convenient to describe a policy goal using a real-valued func-

tion rather than a set of distributions. The interpretation is that the policy function mea-

sures how satisfactory the distribution is in terms of the policy goal. To formalize this al-

ternative approach let f : Z jCj�jT j
+ ! R be a function on distributions such that f (� ) � f (� 0)

means that distribution � satis�es the policy at least as well as distribution � 0. Let � 2 R be

a constant. Consider the following (f; � ) � policy : �( f; � ) � f � 2 Z jCj�jT j
+ jf (� ) � � g. Note

that the initial matching ~X satis�es the (f; � )-policy if, and only if, f (� ( ~X )) � � .
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Figure 3. The �rst four steps of TTC. In each step, there is only one cycle,
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INTERDISTRICT SCHOOL CHOICE 25

To see why this theorem holds, recall that by Lemma 1, �( f; � ) \ � 0 is M-convex. Fur-
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school level. Taken together, these results inform policy makers about what kinds of di-

versity policies are compatible with the other desiderata.

One possible shortcoming of Corollary 2 is that the result holds under the assumption

that the initial matching satis�es the school-level diversity policy. This may be undesir-

able given that often diversity policies are implemented because schools or districts are

regarded as insu�ciently diverse, as in the case of the diversity law in Minnesota. In such

a setting, a potential diversity requirement can be that the diversity should not decrease

as a result of interdistrict school choice according to a diversity measure f . Such a con-

sideration can be formally described as the (f; � ( ~X ))-policy, �( f; � ( ~X )). The next corollary

establishes a positive result for a �( f; � ( ~X ))-policy where the diversity is measured via the

\Manhattan distance" to an ideal point.

Corollary 3. Let �̂ 2 � 0 be an ideal distribution andf (� ) � �
P

c;t j� t
c � �̂ t

cj be the policy function.

Then TTC satis�es(f; � ( ~X ))-policy, constrained e�ciency, individual rationality, and strategy-

proofness.

Note that the initial matching ~X always satis�es (f; � ( ~X ))-policy. Furthermore, we show

that the policy function f is pseudo M-concave. Therefore, this corollary follows from The-

orem 6. More generally, when the diversity is measured by a pseudo M-concave function,

then the TTC outcome is as diverse as the initial matching. Furthermore, TTC also satis�es

the other desirable properties.

Next, we study the balanced-exchange policy introduced in Section 3.2. We estab-

lish that the balanced-exchange policy is represented by a distribution that satis�es M-

convexity. This implies the following result.

Corollary 4. TTC satis�es the balanced-exchange policy, constrained e�ciency, individual ratio-

nality, and strategy-proofness.

One of the advantages of our approach is that M-convexity of a set and pseudo M-

concavity of a function are so general that a wide variety of policy goals satisfy them,

and that it is likely to be applicable for policy goals that one may encounter in the future.

To highlight this point, we consider imposing the diversity and balanced-exchange poli-

cies at the same time. More speci�cally, de�ne a set of distributions � � f � jqt
c � � t

c �

pt
c for all c and t; qc �

P
t � t

c for all c; and
P

t

P
c:d(c)= d � t

c = kd for all dg and call it the com-

bination of balanced-exchange and school-level diversity policies . This is the set of dis-

tributions that satisfy both the school-level oors and ceilings and the balanced-exchange

requirement. We can establish this set is M-convex, implying the following result.

Corollary 5. Suppose that the initial matching satis�es the combination of balanced exchange and

school-level diversity policies. Then TTC satis�es the combination of balanced exchange and school-

level diversity policies, constrained e�ciency, individual rationality, and strategy-proofness.
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In the proof, we show that the combination of balanced exchange and school-level diver-

sity policies satis�es M-convexity. In general, the intersection of two M-convex sets need

not be M-convex.22 Therefore, the M-convexity of the combination of balanced exchange
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of schools). Given that the existing literature has not studied interdistrict school choice,

we envision that many policy goals await study within our framework.

While our paper is primarily theoretical and aimed at proposing a general framework

to study interdistrict school choice, the main motivation comes from applications to actual

programs such as Minnesota's AI program. Given this motivation, it would be interesting

to study interdistrict school choice empirically. For instance, evaluating how well the ex-

isting programs are doing in terms of balanced exchange, student welfare, and diversity,

and how much improvement could be made by a conscious design based on theories such

as the ones suggested in the present paper, are important questions left for future work. In

addition, implementation of our designs in practice would be interesting. Doing so may,

for instance, shed new light on the tradeo� between SPDA and TTC, which has been stud-
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with the home district is the same as the relative ranking in the original preferences. Im-

portantly, in this setting, the initial matching is not �xed but is determined by student

preferences and district admissions rules. In such a setting, we characterize district ad-

missions rules which guarantee that no student is hurt from interdistrict school choice.

The next property of district admissions rules proves to play a crucial role to achieve

this policy.

De�nition 8. A district admissions ruleChd favors own students if for any matchingX that

is feasible for students,

Chd(X ) � Chd(f x 2 X jd(s(x)) = dg).

When a district admissions rule favors own students, any contract that is chosen from a

set of contracts associated with students from a district is also chosen from a superset that

includes additional contracts associated with students from the other districts. Roughly,

this condition requires that, under interdistrict school choice, a district prioritizes its own

students that it used to admit over students from the other districts (even though an out-

of-district student can still be admitted when a student from the district is rejected).

The following result shows that this is exactly the condition which guarantees that in-

terdistrict school choice weakly improves the outcome for every student.

Theorem 8. Every student weakly prefers the DA outcome under interdistrict school choice to

the DA outcome under intradistrict school choice for all student preferences if, and only if, each

district's admissions rule favors own students.

In the proof, we show that in the intradistrict school choice the SPDA outcome can alter-

natively be produced by an interdistrict school choice model where students rank contracts

with all districts and districts have modi�ed admissions rules: For any set of contracts X ,

each district d chooses the following contracts: Chd(f x 2 X jd(s(x)) = dg). Since the

original district admissions rules favor own students, the chosen set under the modi�ed

admissions rule is a subset ofChd(X ) when X is feasible for students. Then the conclusion

that students receive weakly more preferred outcomes in interdistrict school choice than

in intradistrict school choice follows from a comparative statics property of SPDA that we

show (Lemma 5).24 To show the \only if" part, when there exists a district admissions rule

that fails to favor own students, we construct preferences of students such that interdistrict

school choice makes at least one student strictly worse o� than intradistrict school choice.

A.2. District-level Type-speci�c Ceilings. In this section, we show the incompatibility

of type-speci�c ceilings at the district level with the existence of a stable matching.

24We cannot use the comparative statics result of Yenmez (2018) because in our settingChd(X ) �
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De�nition 9. A district admissions ruleChd has adistrict-level type-speci�c ceiling ofqt
d for

type-t students if the number of type-t students admitted cannot exceed this ceiling. More formally,

for any matchingX that is feasible for students,

jf x 2 Chd(X )j� (s(x)) = tgj � qt
d.

Note that, as in the case of school-level type-speci�c ceilings, district admissions rules

do not necessarily satisfy acceptance once district-level type-speci�c ceilings are imposed.

We de�ne a weaker version of the acceptance assumption as follows.

De�nition 10. A district admissions ruleChd that has district-level type-speci�c ceilings isd-

weakly acceptant if, for any contractx associated with a type-t student and districtd and match-

ing X that is feasible for students, ifx is rejected fromX , then atChd(X ),

� the number of students assigned to schoolc(x) is equal toqc(x) , or

� the number of students assigned to districtd is at least
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Since all school admissions rules satisfy substitutability and LAD, so does Ch0
d. �

All of the assumptions on school admissions rules stated in Claims 1, 2, and 3 are satis-

�ed when school admissions rules are responsive: each school has a ranking of contracts

associated with itself and, from any given set of contracts, each school chooses contracts

with the highest rank until the capacity of the school is full or there are no more contracts

left. Responsive admissions rules satisfy substitutability and LAD. Furthermore, for every

school ci , jChci (X )j = min f qci ; jX ci jg.25 By the claims stated above, when school admis-

sions rules are responsive, district admissions rule Chd is feasible and acceptant, and it

has a completion that satis�es substitutability and LAD.

Based on these results, we provide examples of district admissions rules that further

satisfy the additional assumptions considered in di�erent parts of our paper.

B.2. District Admissions Rules Satisfying the Assumptions in Theorem 1. We use the

district admissions rule construction above and we further specify each school's admis-

sions rule. Each school has a responsive admissions rule. If a student is initially matched

with a school, then her contract with this school is ranked higher than contracts of stu-
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Proof. To show acceptance, suppose that matching X is feasible for students and x 2

X d n Chd(X ). There exists i � n such that ci = c(x). SinceX is feasible for students,

x 2 X n Yi � 1 where Yi � 1 is the set of all contracts in X associated with students who are

chosen by schoolsc1; : : : ; ci � 1. Becausex 2 X d n Chd(X ), x is not chosen by ci . Then, by

construction, either ci �lls its capacity or the district admits kd students, which implies

that Chd is acceptant. �

Claim 6. District admissions ruleChd has a completion that satis�es substitutability and LAD.

Proof. First, we construct a completion of Chd. De�ne the following district admissions

rule: given a set of contracts X , when it is the turn of a school, it chooses from all the con-

tracts in X
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A reserve for a student type at a school c guarantees space for this type at school c.

Therefore, when a student is unmatched at a feasible matching and the reserve for her

type is not yet �lled at a school, the district will accept this student at that school if she

applies to it.

Claim 7. Suppose that districts have admissions rules with reserves such that
P

c r t
c = kt for every

typet. Then district admissions rules accommodate unmatched students.

Proof. Suppose that student s is unmatched at a feasible matching X . Let t be the type

of student s. Then there exists a schoolc such that the number of type- t students in c at

X
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Proof. For any set of contractsX , school c, and type t, let X t
c denote the set of all contracts

in X that are associated with school c and type-t students.

Consider the construction of Chd above, but modify it by not removing contracts of

students who are chosen previously. Denote this district admissions rule by Ch0
d. To show

that Ch0
d is a completion of Chd, consider a set of contractsX and suppose f contracts
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has to be the case thatx
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B.5. District Admissions Rules Satisfying the Assumptions in Theorem 8. Consider the

district admissions rule construction in Appendix B.1. In this example, let each school use

a priority ranking in such a way that all contracts of students from district d are ranked

higher than the other contracts.

Claim 9. District admissions ruleChd favors own students.

Proof. Suppose that X is feasible for students. When it is the turn of school ci , it consid-

ers X ci . Therefore, Chd(X ) = Chc1 (X c1 ) [ : : : [ Chck (X ck ). Furthermore, Chci (X ci ) �

Chci (f x 2 X ci jd(s(x)) = dg) by construction. Taking the union of all subset inclusions

yields Chd(X ) � Chd(f x 2 X djd(s(x)) = dg). Therefore, Chd favors own students. �

Appendix C. An Example for Diversity

In this section, we provide an example in which the conditions on the admissions rules

stated in Theorem 3 are satis�ed and, therefore, SPDA satis�es the diversity policy.

Consider a problem with two school districts, d1 and d2. District d1 has schoolc1 with

capacity three and school c2 with capacity two. District d2 has schoolc3 with capacity two

and school c4 with capacity one. There are seven students: studentss1, s2, s3, and s4 are

from district d1, whereas students s5, s6, and s7 are from district d2. Students s1, s5, s6,

and s7 have type t1 and s2, s3, and s4 have type t2. To construct district admissions rules

that satisfy the properties stated in Theorem 3, let us �rst specify type-speci�c ceilings and

calculate implied oors and implied ceilings. Suppose that

qt1
c1

= 1; qt2
c1

= 2; qt1
c2

= 1; qt2
c2

= 1;

qt1
c3

= 2; qt2
c3

= 1; qt1
c4

= 1; qt2
c4

= 1:

These yield the following implied oors, 26

p̂t1
d1

= 1; p̂t2
d1

= 2; p̂t1
d2

= 2; p̂t2
d2

= 0;

and implied ceilings

q̂t1
d1

= 2; q̂t2
d1

= 3; q̂t1
d2

= 3; q̂t2
d2

= 1:

26 To see this, note that there cannot be zero type-t1 students in d1 (otherwise not all type- t1 students
can be matched since there are only three spaces available for type-t1 students in d2). If there is one type-t1

student in d1, there has to be three type-t1 students in d2, which implies there cannot be any type- t2 students
in d2, and this implies there will be three type- t2 students in d1. If there are two type- t1 students in d1, there
have to be two type- t2 students in d2, which implies there is one type- t2 student in d2, and this implies there
will be two type- t2 students in d1. By noting these minimum and maximum numbers, we obtain the implied
reserves and implied ceilings accordingly. These bounds are achievable because it is feasible to have (i) one
type-t1 student in d1, three type-t1 students in d2, zero type-t2 students in d2, and three type-t2 students in
d1, and (ii) two type- t1 students in d1, two type- t2 students in d2, one type-t2 student in d2, and two type- t2

students in d1.
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For any type t and two districts d and d0, denote q̂t
d=kd � p̂t

d0=kd0 by � t
d;d0. Using the

implied oors and ceilings above, we get:

� t1
d1 ;d2

= 2=4 � 2=3 = � 1=6;

� t1
d2 ;d1

= 3=3 � 1=4 = 3=4;

� t2
d1 ;d2

= 3=4 � 0=3 = 3=4; and

� t2
d2 ;d1

= 1=3 � 2=4 = � 1=6:

Hence, these type-speci�c ceilings satisfy the condition stated in Theorem 3 that � t
d;d0 � �

for � = 0:75.

We construct district admissions rules that have type-speci�c ceilings, accommodate
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the �rst step. Therefore, student s is matched with a strictly less preferred school than her

initial school, which implies that SPDA does not satisfy individual rationality. �

Proof of Theorem 2.We �rst prove that if each district admissions rule is rationed, then

SPDA satis�es the balanced-exchange policy. Let X be the matching produced by SPDA

for a given preference pro�le.

We begin by showing that each student must be matched with a school in X . Suppose,

for contradiction, that student s is unmatched. SinceX is a stable matching, every contract

x = ( s; d; c) associated with the student is rejected by the corresponding district, i.e., x =2

Chd(X [ f xg). Otherwise, student s and district d would like to match with each other

using contract x, contradicting the stability of matching X . SinceX [ f xg is feasible for

students, acceptance implies that, for each district d, either every school in the district is

full or that the district has at least kd students at matching X . Both of them imply that

the district has at least kd students in matching X since the sum of the school capacities

in district d is at least kd. But this is a contradiction to the assumption that student s is

unmatched since the existence of an unmatched student implies that there is at least one

district d such that the number of students in X d is less thankd. Therefore, all students are

matched in X .

BecauseX is the outcome of SPDA, it is feasible for students. Therefore, because district

admissions rules are rationed, the number of students in district d cannot be strictly more

than kd for any district d. Furthermore, since every student is matched, the number of

students in district d must be exactly kd (because, otherwise, at least one student would

have been unmatched.) As a result, SPDA satis�es the balanced-exchange policy.

Next, we prove that if at least one district's admissions rule fails to be rationed, then

there exists a student preference pro�le under which SPDA does not satisfy the balanced-

exchange policy. Suppose that there exist a district d and a matching X , which is feasible

for students, such that jChd(X )j > k d. Consider a feasible matching X 0 such that (i) all

students are matched, (ii) X 0
d = Chd(X ), and (iii) for every district d0 6= d, jX 0

d0j � kd0.

The existence of suchX 0 is guaranteed since every district has enough capacity to serve

its students (i.e., for every district d0,
P

c:d(c)= d0 qc � kd0), and jChd(X )j > k d. Now, consider

any student preferences, where every student likes her contract in X 0 the most.

We show that SPDA stops in the �rst step. For district d0 6= d, X 0
d0 is feasible and the

number of students matched tokd
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which implies Chd(Chd(X )) = Chd(X ). As a result, Chd(X 0
d) = X 0

d. Therefore, SPDA

stops at the �rst step since no contract is rejected.

Since SPDA stops at the �rst step, the outcome is matching X 0. But X 0fails the balanced-

exchange policy becausejX 0
dj = jChd(X )j > k d. �

Proof of Theorem 3.To prove this result, we provide the following lemmas.

Lemma 2.
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To prove the above claim, assume for contradiction that there exists X 2 M 2 such that

� t
d(X ) 6= � t

d(X̂ ). By Lemma 3, � t
d(X ) 6= � t

d(X̂ ) implies that � t
d(X ) < � t

d(X̂ ). Then there exists

c with d(c) = d such that � t
c(X ) < � t

c(X̂ ). Consider the following procedure.

Step 0: Initialize by setting (t1; c1) := ( t; c). Note that � t1
c1

(X ) < � t1
c1

(X̂ ) by de�nition

of c.

Step i � 1: We begin with (t i ; ci ). Note that (by assumption for i = 1, and as shown

later for i � 2), � t i
ci

(X ) < � t i
ci

(X̂ ). Denote di = d(ci ). Now,

(1) Suppose that there existsi 0 < i such that either (i) c�
i 0 = ci or (ii) � t i

ci
(X ) < qci

and d(c�
i 0) = d(ci ). If such an index i 0exists, then set(t i +1 ; c�

i ) := ( t i 0+1 ; c�
i 0).

(2) Suppose not. Then, if there existst0 2 T such that � t0

ci
(X ) > � t0

ci
(X̂ ), then set

t i +1 := t0and c�
i := ci .

(3) If not, then note that
P

~t2T � ~t
ci

(X ) < qci .
28 Also note that there exists a type-

school pair (t0; c0) with c0 6= ci such that � t0

c0(X ) > � t0

c0(X̂ ) and d(c0) = di because
P

~c:d(~c)= di ;~t2T � ~t
~c(X ) =

P
~c:d(~c)= di ;~t2T � ~t

~c(X̂ ) = kdi .

(a) If t0 = t i , then let ~X be a matching such that

� ~t
~c( ~X ) =

8
>><

>>:

� t i
ci

(X ) + 1 for (~t; ~c) = ( t i ; ci );

� t0

c0(X ) � 1 for (~t; ~c) = ( t i ; c0);

� ~t
~c(X ) otherwise.

Note that ~X 2 M 1.29 Also, by construction,
P

~t; ~c j � ~t
~c( ~X ) � � ~t

~c(X̂ ) j=
P

~t; ~c j � ~t
~c(X ) � � ~t

~c(X̂ ) j � 2 <
P

~t; ~c j � ~t
~c(X ) � � ~t

~c(X̂ ) j, which contradicts the

assumption that X 2 M 2.

(b) Therefore, suppose that t0 6= t i and let t i +1 := t0and c�
i := c0.

(4) The pair (t i +1 ; c�
i ) created above satis�es � t i +1

c�
i

(X ) > � t i +1
c�

i
(X̂ ), so there exists

c0 2 C such that � t i +1
c0 (X ) < � t i +1

c0 (X̂ ). Setci +1 = c0. Note that � t i +1
ci +1 (X ) < � t i +1

ci +1 (X̂ ).

We follow the procedure above to de�ne (t1; c1); (t2; c�
1); (t2; c2); (t3; c�

2); (t3; c3), and so

forth. Because the setT is �nite, we have i and j > i with t i = t j . Consider the smallest

j with this property (note that given such j , i is uniquely identi�ed). Now, let ~X be a

28A proof of this fact is as follows. By an earlier argument, � t i
ci

(X ) < � t i
ci

(X̂ ). Moreover, by assumption
� ~t

ci
(X ) � � ~t

ci
(X̂ ) for every ~t 2 T . Therefore,

P
~t 2T � ~t

ci
(X ) <

P
~t 2T � ~t

ci
(X̂ ) � qci .

29A proof of this fact is as follows. Because
P

~t 2T � ~t
ci

(X ) < qci ,
P

~t 2T � ~t
ci

( ~X ) =
P

~t 2T � ~t
ci

(X )+1 � qci . For
every ~c 6= ci ,

P
~t 2T � ~t

~c( ~X ) �
P

~t 2T � ~t
~c(X ) � q~c. Thus, all school capacities are satis�ed. For all ~c;~t, � ~t

~c( ~X ) �
maxf � ~t

~c(X ); � ~t
~c(X̂ )g � q~t

~c by construction, so all type-speci�c ceilings are satis�ed. And
P

~t 2T ;~c2C � ~t
~c( ~X ) =

P
~t 2T � ~t

~c(X ) by de�nition of ~X , so ~X is a legitimate matching. Finally, � ~t
~d
( ~X ) = � ~t

~d
(X ) for every ~t and ~d, so

~X 2 M 1.
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matching such that

� ~t
~c( ~X ) =

8
>><

>>:

� tk
ck

(X ) + 1 for (~t; ~c) = ( tk ; ck) for any k 2 f i; i + 1; : : : ; j � 1g;

� tk +1
c�

k
(X ) � 1 for (~t; ~c) = ( tk+1 ; c�

k) for any k 2 f i; i + 1; : : : ; j � 1g;

� ~t
~c(X ) otherwise.

We will show eX 2 M 1. To do so, by construction of eX , �rst note that
P

~t2T � ~t
~c( ~X ) �

P
~t2T � ~t

~c(X ) + 1 � q~c for any ~c 2 f ci ; : : : ; cj � 1g such that
P

~t2T � ~t
~c(X ) < q~c. Next, by

construction of eX ,
P

~t2T � ~t
~c( ~X ) =

P
~t2T � ~t

~c(X ) = q~c for every ~c 2 f ci ; : : : ; cj � 1g such that
P

~t2T � ~t
~c(X ) = q~c. Moreover,

P
~t2T � ~t

~c( ~X ) �
P

~t2T � ~t
~c(X ) = q~c for every ~c 2 f c�

i ; : : : ; c�
j � 1g. Fi-

nally, for every ~c 2 C n fci ; : : : ; cj � 1; c�
i ; : : : ; c�

j � 1g,
P

~t2T � ~t
~c( ~X ) =

P
~t2T � ~t

~c(X ) � q~c. Thus,

all school capacities are satis�ed by ~X . Also by construction of ~X , for each ~d 2 D ,
P

~c:d(~c)= ~d � ~t
~c( ~X ) =

P
~c:d(~c)= ~d � ~t

~c(X ) = k ~d, so ~X is rationed. Furthermore, for every ~c 2 C

and ~t 2 T , � ~t
~c( ~X ) � maxf � ~t

~c(X ); � ~t
~c(X̂ )g by construction, so all type-speci�c ceilings are sat-

is�ed. Moreover, by construction of ~X , for each ~t 2 T , either � ~t
~c( ~X ) = � ~t

~c(X ) for every ~c 2 C

or there exists exactly one pair of schools ~c0 and ~c00in C such that � ~t
~c0( ~X ) = � ~t

~c0( ~X ) + 1 ,

� ~t
~c00( ~X ) = � ~t

~c00( ~X ) � 1, and � ~t
~c( ~X ) = � ~t

~c(X ) for every ~c 2 C n f~c0; ~c00g. Thus, ~t 2 T ,
P

~c2C � ~t
~c( ~X ) =

P
~c2C � ~t

~c(X ) for every ~t 2 T . Therefore, ~X is legitimate.

By construction of ~X , either � t
d0( ~X ) = � t

d0(X ) or � t
d0( ~X ) = � t

d0(X ) � 1. This implies that
~X 2 M 1. Furthermore,

P
~t; ~c j � ~t

~c( eX ) � � ~t
~c(X̂ ) j<

P
~t; ~c j � ~t

~c(X ) � � ~t
~c(X̂ ) j, since while creating

the � ~t
~c( eX ) entries, we add 1 to some entries of X that satisfy � ~t

~c(X ) < � ~t
~c(X̂ ) and subtract

1 from some entries of X that satisfy � ~t
~c(X ) > � ~t

~c(X̂ ). These lead to a contradiction to the

assumption that X 2 M 2, which completes the proof. �

Now we are ready to prove the theorem. The \if" part follows from Lemmas 2 and 3.

Speci�cally, by Lemma 2, SPDA produces a legitimate matching. Therefore, by Lemma 3,

we have p̂t
d � � t

d (X ) � q̂t
d for every t 2 T and d 2 D . For each school district d, hence, the

maximum proportion of type- t students that can be admitted is q̂t
d=kd and the minimum

proportion of type t students that can be admitted is p̂t
d=kd. Therefore, the ratio di�erence

of type- t students in any two districts is at most max
d6= d0

f q̂t
d=kd � p̂t

d0=kd0g. We conclude that the

� -diversity policy is achieved when q̂t
d=kd � p̂t

d0=kd0 � � for every t, d, and d0with d 6= d0.

The \only if" part of the theorem follows from Lemma 4. Suppose that q̂t
d=kd� p̂t

d0=kd0 > �

for some t, d, and d0 with d 6= d0. From Lemma 4, we know the existence of a legitimate

matching X such that � t
d (X ) = q̂t

d and � t
d0 (X ) = p̂t

d0. Consider a student preference pro�le

where each student prefers her contract in X the most. Then, since the admissions rules

d
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Proof of Theorem 5.Suzuki et al. (2017) study a setting in which each student is initially en-

dowed with a school and there are no constraints associated with student types, that is,

when there is just one type. In that setting, they show that if the distribution is M-convex,

then their mechanism, called TTC-M, satis�es the policy goal, constrained e�ciency, indi-

vidual rationality, and strategy-proofness. To adapt their result to our setting, consider the
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To show strategy-proofness, in the original problem, let s be a student, t her type, P� s the

preference pro�le of students other than student s, Ps the true preference of student s, and

P0
s a misreported preference of student s. Furthermore, let c and c0be schools assigned to

student s under (Ps; P� s) and (P0
s; P� s) for TTC, respectively. Note that the previous argu-

ment establishes that, in the hypothetical problem, student s is allocated to (c; t) and (c0; t)

under ( ~Ps; ~P� s) and ( ~P0
s; ~P0

� s), respectively. Because TTC-M is strategy-proof, it follows

that (c; t) ~Ps (c0; t) or c = c0. By the construction of ~Ps,
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Proof of Theorem 7.Let f (� ) = 1 when � 2 � \ � 0 and f (� ) = 0 otherwise.
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Case 2: Second, consider the case in which there exists no typet0 such that � t0

c < ~� t0

c .

Then, � t0

c � ~� t0

c for every t0 6= t. In particular, the total number of students assigned to

school c at � is strictly larger than at ~� . Because everyone is matched with some school at�

and ~� by assumption, it is implied that, without loss of generality, there exists school c0 6= c

such that the total number of students matched with c0 is strictly larger at ~� than at � . In

addition, there exists type t0such that ~� t0

c0 > � t0

c0.

Now we proceed to show condition (1) for this case. To do so, we �rst note that � �

� c;t + � c0;t 0 assigns the same number of students as in� , so all students are assigned in

� � � c;t + � c0;t 0. Furthermore, it assigns a smaller number of students at school c than � , so

the capacity constraint at school c is satis�ed at � � � c;t + � c0;t 0. Likewise, � � � c;t + � c0;t 0

assigns a weakly smaller number of students at c0 than ~� does, so the capacity constraint

at school c0 is satis�ed at � � � c;t + � c0;t 0.

Next we check that the oor for type t and ceiling for type t0 at school c are satis�ed at

� � � c;t + � c0;t 0. Because� t
c � 1 � ~� t

c � pt
c (the �rst inequality follows from the assumption

� t
c > ~� t

c and the second from the fact that ~� 2 � ), the oor for type t at school c is satis�ed

at � � � c;t + � c0;t 0. Sinceqt
c � � t

c > � t
c � 1 (because� 2 � ), the ceiling for type t at school c is

satis�ed at � � � c;t + � c0;t 0.

Now we check that the oor for type t0and ceiling for type t at school c0are satis�ed at

� � � c;t + � c0;t 0. For type t0 at school c0, we have � t0

c0 + 1 > � t0

c0 � pt0

c0 (the �rst inequality is

obvious and the second follows from the fact that � 2 � ), so the oor for type t0 at school

c0 is satis�ed for � � � c;t + � c0;t 0. Furthermore, we have qt0

c0 � ~� t0

c0 � � t0

c0 +1 (the �rst inequality

follows from the fact that ~� 2 � and the second one follows from ~� t0

c0 > � t0

c0), so the ceiling

for type t0at school c0 is satis�ed at � � � c;t + � c0;t 0.

No other coe�cients changed between � and � � � c;t + � c0;t 0, so all other constraints are

satis�ed at the latter distribution. Therefore, (1) is satis�ed.

The proof that (1) is satis�ed follows from the facts that � t
c > ~� t

c, ~� t0

c0 > � t0

c0, there are more

students assigned to schoolc at � than ~� , and there are more students assigned to school

c0 at ~� than � . If we change the roles of � with ~� , c with c0, and t with t0, then (1) would

imply ~� � � c0;t 0 + � c;t 2 � \ � 0. But this is exactly (2), so we are done. Therefore,� \ � 0 is

an M-convex set.

The desired conclusion then follows from Theorem 5. �

Proof of Corollary 3.We show that f is pseudo M-concave. Let �; ~� 2 � 0 be distinct.

Then U � f (2 Tf 5.784 -4.338 Td jrly
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V1 � f (c0; t0)j�̂ c0

t0 � ~� c0

t0 > � c0

t0g, V2 � f (c0; t0)j ~� c0

t0 > �̂ c0

t0 > � c0

t0g, and V3 � f (c0; t0)j ~� c0

t0 > � c0

t0 � �̂ c0

t0g.

We consider several cases.
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Proof of Corollary 4.Let the balanced-exchange policy be denoted by � . We show that � \

� 0 = f � j8d
P

t � t
d = kd and 8c qc �

P
t � t

cg is M-convex.

Suppose that there exist �; ~� 2 � \ � 0 such that � t
c > ~� t

c. To show M-convexity, we need

to �nd school c0 and type t0 with � t0

c0 < ~� t0

c0 such that (1) � � � c;t + � c0;t 0 2 � \ � 0 and (2)
~� + � c;t � � c0;t 0 2 � \ � 0.

If there exists t0such that ~� t0

c > � t0

c , then the number of students in each district and each

school are the same in� with � � � c;t + � c;t0 and ~� with ~� + � c;t � � c;t0, so both (1) and (2)

are satis�ed.

Otherwise, suppose that, for every type t0 6= t, ~� t0

c � � t0

c . Therefore, there are more

students assigned to schoolc at � than ~� . Since the number of students assigned to district

d � d(c) in � and ~� are the same, there exists another schoolc0 in district d such that c0has

more students in ~� than � . Furthermore, there exists type t0such that ~� t0

c0 > � t0

c0.

We �rst show (1). Since both schools c and c0 are in district d, the number of students

assigned to district d is the same at� and � � � c;t + � c0;t 0. Therefore, the number of students

assigned to district d at � � � c;t + � c0;t 0 is kd.

Next we check the school capacity constraints. The number of students assigned to

school c at � � � c;t + � c0;t 0 is one less than the corresponding number at � , so the capacity

constraint of school c at � � � c;t + � c0;t 0 is satis�ed. Furthermore, the number of students

assigned to schoolc0 at � � � c;t + � c0;t 0 is weakly smaller than the corresponding number

at ~� . Therefore, the capacity constraint of school c0at � � � c;t + � c0;t 0 is also satis�ed.

Since all the other coe�cients are the same at � and � � � c;t + � c0;t 0, (1) holds.

Note that the above argument relies on the facts � t
c > ~� t

c, � t0

c0 < ~� t0

c0, and d(c) = d(c0). If we

switch the roles of c with c0 and � with ~� , the implication of (1) is ~� � � c0;t 0 + � c;t 2 � \ � 0,

which is exactly (2). Therefore, � is M-convex.

The result then follows from Theorem 5 because � \ � 0 is M-convex and the initial match-

ing trivially satis�es the balanced-exchange policy. �

Proof of Corollary 5.We �rst show that the set of distributions � \ � 0 = f � j8c; t qt
c � � t

c �

pt
c; 8c qc �

P
t � t

c and 8d
P

t � t
d = kdg is an M-convex set.

Suppose that there exist �; ~� 2 � \ � 0 such that � t
c > ~� t

c. To show M-convexity, we need

to �nd school c0 and type t0 with � t0

c0 < ~� t0

c0 such that (1) � � � c;t + � c0;t 0 2 � \ � 0 and (2)
~� + � c;t � � c0;t 0 2 � \ � 0. Let d � d(c). To show both conditions, we look at two possible

cases depending on whether c0 = c or not.

Case 1: First consider the case when there exists type t0 such that � t0

c < ~� t0

c . We prove

(1) that � � � c;t + � c;t0 2 � \ � 0. Since � � � c;t + � c;t0 assigns the same total number of

students at school c as � , the capacity constraint at school c at � � � c;t + � c;t0 is satis�ed.

Furthermore, the number of students assigned to any district at � � � c;t + � c;t0 is the same
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as � , which means that the number of students in every district is equal to the number of

students who are from there. Next, because � t
c � 1 � ~� t

c � pt
c (the former inequality comes

from the assumption � t
c > ~� t

c, and the latter comes from the fact ~� 2 � \ � 0), the oor for

type t at school c is satis�ed at � � � c;t + � c;t0. Next, the facts that � 2 � \ � 0 and � t
c > ~� t

c

implies qt
c � � t

c � ~� t
c + 1. Therefore, the ceiling for type t at school c at � � � c;t + � c;t0 is

satis�ed.

The oor for type t0 at school c is satis�ed for � � � c;t + � c;t0 because� t0

c + 1 � � t0

c � pt0

c

(the former inequality is obvious, and the latter comes from the fact � 2 � \ � 0). Similarly,

the ceiling for type t0at school c is satis�ed at � � � c;t + � c;t0 becauseqt
c � ~� t0

c � � t0

c + 1.

No other coe�cients changed between � and � � � c;t + � c;t0, so all other constraints are

satis�ed at the latter distribution. Therefore, (1) is satis�ed.

The proof that (1) is satis�ed follows from the facts that � t
c > ~� t

c and � t0

c < ~� t0

c . By changing

the roles of t with t0and � with ~� in the preceding argument, we get the implication of (1)

that ~� � � c;t0 + � c;t 2 � \ � 0. But this is exactly (2).

Case 2: In this case, c0 6= c for every (c0; t0) such that � t0

c0 < ~� t0

c0. Then, � t0

c � ~� t0

c for every

t0 6= t. In particular, the total number of students assigned to school c at � is strictly larger

than at ~� . Because the number of students in district d are the same at� and ~� , there exist

school c0 in district d such that the total number of students matched with c0 is strictly

larger at ~� than at � . In addition, there exists type t0such that ~� t0

c0 > � t0

c0.

Now we proceed to show condition (1) for this case. To do so, we �rst note that � �

� c;t + � c0;t 0 assigns the same number of students to each district as in � , so the number of

students assigned to each district d is kd
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No other coe�cients changed between � and � � � c;t + � c0;t 0, so all other constraints are

satis�ed at the latter distribution.

The proof that (1) is satis�ed follows from the facts that d(c) = d(c0), � t
c > ~� t

c, ~� t0

c0 > � t0

c0,

there are more students assigned to school c at � than ~� , and there are more students

assigned to schoolc0at ~� than � . If we change the roles of � with ~� , c with c0, and t with t0,

then (1) would imply ~� � � c0;t 0 + � c;t 2 � \ � 0. But this is exactly (2), so we are done.

The result then follows from Theorem 5 because � \ � 0 is M-convex. �

Proof of Theorem 8.Suppose that district admissions rules favor their own students. Fix

a student preference pro�le. Recall that under interdistrict school choice, students are

assigned to schools by SPDA, where each student ranks all contracts associated with her

and each district d has the admissions rule Chd. Under intradistrict school choice, students

are assigned to schools by SPDA where students only rank the contracts associated with

their home districts and each district d has the admissions rule Chd. We �rst show that

the intradistrict SPDA outcome can be produced by SPDA when all districts participate

simultaneously and students rank all contracts, including the ones associated with the

other districts, by modifying admissions rules for the districts. Let Ch0
d(X ) � Chd(f x 2

X jd(s(x)) = dg) be the modi�ed admissions rule.

In SPDA, if district admissions rules have completions that satisfy path independence,

then SPDA outcomes are the same under the completions and the original admissions

rules because in SPDA a district always considers a set of proposals which is feasible for

students. Furthermore, SPDA does not depend on the order of proposals when district

admissions rules are path independent. As a result, SPDA does not depend on the order

of proposals when district admissions rules have completions that satisfy path indepen-

dence. Therefore, the intradistrict SPDA outcome can be produced by SPDA when all

districts participate simultaneously and students rank all contracts including the ones as-

sociated with the other districts and each district dhas the admissions ruleCh0
d. The reason

behind this is that when each district d has admissions rule Ch0
d, a student is not admitted

to a school district other than her home district. Furthermore, because Chd favors own

students, the set of chosen students underCh0
d is the same as that under Chd for any set

of contracts of the form f x 2 X jd(s(x)) = dg for any set X .

We next show that Ch0
d has a path-independent completion. By assumption, for every

district d, there exists a path-independent completion fChd of Chd. Let fCh
0

d(X ) � fChd(f x 2

X jd(s(x)) = dg). We show that fCh
0

d is a path-independent completion of Ch0
d. To show

that fCh
0

d(X ) is a completion, consider a set X such that fCh
0

d(X ) is feasible for students.

Let X � � f x 2 X jd(s(x)) = dg. Then we have the following:

fCh
0

d(X � ) = fChd(X � ) = Chd(X � ) = Ch0
d(X � );
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District dn accepts fChdn (� n� 1
d [ X n

dn
) and rejects the rest of the contracts. Let� n

dn
�

fChdn (� n� 1
dn

[ X n
dn

) and � n
d � � n� 1

d n Y n where Y n � f x 2 � n� 1j9y 2 � n
dn

s.t. s(x) =

s(y)g for d 6= dn . If there are no blocking contracts for matching � n under ( fChd)d2D ,

then stop and return � n , otherwise go to Step n + 1.

We show that district dn does not reject any contract in � n� 1
dn

by mathematical induction

on n, i.e., � n
dn

� � n� 1
dn

for every n � 1. Consider the base case forn = 1. Recall that � 1
d1

=
fChd1 (� 0

d1
[ X 1

d1
) = fChd1 (� 0

d1
[ X 1

d1
). By construction, � 1

d1
is a feasible matching. We claim

that � 0
d1

[ � 1
d1

is feasible for students. Suppose, for contradiction, that it is not feasible for

students. Then there exists a students who has one contract in � 0
d1

and one in � 1
d1

n� 0
d1

. Call

the latter contract z. By construction, z Ps � 0
s, and by path independence, z 2 fChd1 (� 0

d1
[

f zg). Furthermore, since student s is matched with district d1 in � 0, d(s) = d1. Therefore,
fChd1 (� 0

d1
[ f zg) = fCh

0

d1
(� 0

d1
[ f zg) by de�nition of fCh

0

d1
and construction of � 0. Hence,

z 2 fCh
0

d1
(� 0

d1
[ f zg), which contradicts the fact that � 0 is stable under ( fCh

0

d)d2D . Hence,

� 0
d1

[ � 1
d1

is feasible for students. Feasibility for students implies that fChd1 (� 0
d1

[ � 1
d1

) �
fCh

0

d1
(� 0

d1
[ � 1

d1
). Path independence and construction of � 1

d1
yield � 1

d1
= fChd1 (� 0

d1
[ � 1

d1
).

Furthermore, there exists no student s, such that d(s) = d1 ,who has a contract in � 1
d1

n � 0,

as this would contradict stability of � 0under ( fCh
0

d)d2D . This implies, by de�nition of fCh
0

d1
,

that fCh
0

d1
(� 0

d1
[ � 1

d1
) = fCh

0

d1
(� 0

d1
), and, by stability of � 0 under ( fCh

0

d)d2D , fCh
0

d1
(� 0

d1
) = � 0

d1
.

Therefore, � 1
d1

= fChd1 (� 0
d1

[ � 1
d1

) � fCh
0

d1
(� 0

d1
[ � 1

d1
) = � 0

d1
= � 0

d1
, which means that district

d1 does not reject any contracts.

Now consider district dn where n > 1. There are two cases to consider. First consider

the case when dn 6= di for every i < n . In this case, � n� 1
dn

� � 0
dn

= � 0
dn

. We repeat
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Therefore, district dn gets at least one new contract at Stepn. Hence, at least one student

gets a strictly more preferred contract at every step of the algorithm while every other

student gets a weakly more preferred contract. Since the number of contracts is �nite, the

algorithm has to end in a �nite number of steps.

�

Because the interdistrict SPDA outcome under (Chd)d2D is the same as the interdistrict

SPDA outcome under ( fChd)d2D and the interdistrict SPDA outcome under (Ch0
d)d2D is the

same as the interdistrict SPDA outcome under ( fCh
0
)d2D , the lemma implies that every stu-

dent weakly prefers the outcome of interdistrict SPDA under (Chd)d2D to the outcome of

intradistrict SPDA (which is the same as the interdistrict SPDA outcome under (Ch0
d)d2D ).

This completes the proof of the �rst part.

To prove the second part of the theorem, we show that if at least one district's admissions

rule fails to favor own students, then there exists a preference pro�le such that not every

student is weakly better o� under interdistrict SPDA. Suppose that for some district d,

there exists a matchingX , which is feasible for students, such that Chd(X ) is not a superset

of Chd(X � ), where X � � f x 2 X jd(s(x)) = dg. Now, consider a matching Y where (i) all

students from district d are matched with schools in district d, (ii) Y is feasible, and (iii)

Y � Chd(X � ). The existence of such aY follows from the fact that Chd(X � ) is feasible and

kd0 �
P

c:d(c)= d0 qc, for every district d0(that is, there are enough seats in district d0 to match

all students from district d0d
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In interdistrict SPDA, at the �rst step, each student who has a contract in X proposes that

contract and every other student proposes a contract associated with a district di�erent

from d. District d considers X (or X d), and tentatively accepts Chd(X ). BecauseChd(X ) 6�

Chd(X � ) by assumption, at least one student who has a contract in Chd(X � ) is rejected.

Therefore, this student is strictly worse o� under interdistrict school choice. �

Proof of Theorem 9.To show the result, we �rst introduce the following weakening of the

substitutability condition (Hat�eld and Kojima, 2008). A district admissions rule Chd sat-

is�es weak substitutability if, for every x 2 X � Y � X with x 2 Chd(Y) and jYsj � 1 for

eachs 2 S, it must be that x 2 Chd(X ).

Under weak substitutability, the following result is known (the statement is slightly

modi�ed for the present setting).

Theorem 10 (Hat�eld and Kojima (2008)) . Let d andd0 be two distinct districts. Suppose that

Chd satis�es IRC but violates weak substitutability. Then, there exist student preferences and

a path-independent admissions rule ford0 such that, regardless of the other districts' admissions

rules, no stable matching exists.

Given this result, for our purposes it su�ces to show the following.

Theorem 9'. Let d be a district. There exist a set of students, their types, schools ind, and type-

speci�c ceilings ford such that there is no district admissions rule ofd that has district-level type-

speci�c ceilings, isd-weakly acceptant, and satis�es IRC and weak substitutability.

To show this result, consider a district d with kd = 2. There are three schoolsc1, c2, c3 in
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cases that satisfy d-weak acceptance and type-speci�c ceilings are f (s2; c2)g and

f (s1; c1); (s3; c2)g. The latter would violate weak substitutability since in that case

(s3; c2) would be accepted in a larger set f (s1; c1); (s2; c2); (s3; c2)g and rejected from

a smaller set f (s2; c2); (s3; c2)g. Then, by IRC, Chd(f (s1; c1); (s2; c2); (s3; c2)g) =

f (s2; c2)g implies Chd(f (s1; c1); (s2; c2)g) = f (s2; c2)g. Then we note that

Chd(f (s1; c1); (s2; c2); (s3; c1)g) = f (s2; c2); (s3; c1)g since by weak substitutabil-

ity (s1; c1) cannot be chosen, and therefore (s2; c2) and (s3; c1) have to be

chosen due to d-weak acceptance. Next, again by weak substitutabil-

ity, we note that Chd(f (s1; c1); (s2; c2); (s3; c1)g) = f (s2; c2); (s3; c1)g implies

Chd(f (s1; c1); (s3; c1)g) = f (s3; c1)g. Finally, we note that this contradicts with

Chd(f (s1; c1); (s2; c1); (s3; c1); (s4; c1)g) = f (s1; c1)g and IRC.

(2) Suppose Chd(f (s2; c2); (s3; c2); (s4; c2)g) = f (s3; c2)g. Consider

Chd(f (s2; c3); (s4; c3)g). This can be either f (s2; c3)g or f (s4; c3)g. We consider

these two possible cases separately. These two subcases will follow similar

arguments to Case (1) above and change the indexes appropriately in order to get

a contradiction.

(a) Suppose Chd(f (s2; c3); (s4; c3)g) = f (s2; c3)g. Next, we argue that

Chd(f (s1; c1); (s2; c3); (s4; c3)g) = f (s2; c3)g. This is because the only two

cases that satisfy d-weak acceptance and type-speci�c ceilings are f (s2; c3)g

and f (s1; c1); (s4; c3)g. The latter would violate weak substitutability since in

that case (s4; c3) would be accepted in a larger set f (s1; c1); (s2; c3); (s4; c3)g

and rejected from a smaller set f (s2; c3); (s4; c3)g. Then, by IRC,

Chd(f (s1; c1); (s2; c3); (s4; c3)g) = f (s2; c3)g implies Chd(f (s1; c1); (s2; c3)g) =

f (s2; c3)g. Then we note that Chd(f (s1; c1); (s2; c3); (s4; c1)g) = f (s2; c3); (s4; c1)g

since by weak substitutability (s1; c1) cannot to be chosen, therefore (s2; c3)

and (s4; c1) have to be chosen due to d-weak acceptance. Next, again by weak

substitutability, we note that Chd(f (s1; c1); (s2; c3); (s4; c1)g) = f (s2; c3); (s4; c1)g

implies Chd(f (s1; c1); (s4; c1)g) = f (s4; c1)g. Finally, we note that this contra-

dicts with Chd(f (s1; c1); (s2; c1); (s3; c1); (s4; c1)g) = f (s1; c1)g and IRC.

(b) Suppose Chd(f (s2; c3); (s4; c3)g) = f (s4; c3)g. Next, we argue that

Chd(f (s2; c3); (s3; c2); (s4; c3)g) = f (s4; c3)g. This is because the only two

cases that satisfy d-weak acceptance and type-speci�c ceilings are f (s4; c3)g

and f (s2; c3); (s3; c2)g. The latter would violate weak substitutability since in

that case (s2; c3) would be accepted in a larger set f (s2; c3); (s3; c2); (s4; c3)g

and rejected from a smaller set f (s2; c3); (s4; c3)g. Then, by IRC,

Chd(f (s2; c3); (s3; c2); (s4; c3)g) = f (s4; c3)g implies Chd(f (s3; c2); (s4; c3)g) =

f (s4; c3)g. Then we note that Chd(f (s2; c2); (s3; c2); (s4; c3)g) = f (s2; c2); (s4; c3)g
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since by weak substitutability (s3; c2) cannot to be chosen, therefore (s4; c3)

and (s2; c2) have to be chosen due to d-weak acceptance. Next, again by weak

substitutability, we note that Chd(f (s2; c2); (s3; c2); (s4; c3)g) = f (s2; c2); (s4; c3)g

implies Chd(f (s2; c2); (s3; c2)g) = f (s2; c2)g. Finally, we note that this contra-

dicts with Chd(f (s2; c2); (s3; c2); (s4; c2)g) = f (s3; c2)g and IRC.

�


