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Abstract

We develop a model of inter-temporal and intra-temporal price discrimination by

airlines to study the ability of di�erent discriminatory mechanisms to remove sources

of ine�ciency and the associated distributional implications. To estimate the model's

multi-dimensional distribution of preference heterogeneity, we use unique data from

international airline markets with 
ight-level variation in prices across time and cabins,

and information on passengers' reason for travel. We �nd that current pricing practices



1 Introduction

Discriminatory pricing enables �rms with market power to increase their pro�ts, but it can

lead to ine�cient outcomes and have adverse distributional e�ects in some markets. This

makes the welfare implications of price discrimination theoretically ambiguous, and a sub-

ject of substantial interest for empirical studies. The implications are even less clear when

demand is revealed gradually and �rms can useinter -temporal and intra -temporal price

discrimination to screen consumers based on preference for quality and time of purchase.1

In such settings, di�erent types of allocative ine�ciencies can arise due to asymmetric infor-

mation about preferences and stochastic demand.

In this paper, we use unique data on international air-travel to estimate a model of

demand and supply for air travel. We use the estimates to measure allocative ine�ciency

and identify the portion attributable to each source: asymmetric information and stochas-

tic demand. To achieve this, like Bergemann, Brooks, and Morris (2015), we progressively

increase the information the seller has about preferences and measure the increase in wel-

fare under various discriminatory pricing strategies (i.e., second, third and �rst) and other

screening mechanisms (e.g., VCG auction). The ine�ciency remaining after removing all

forms of asymmetric information is then attributable to stochastic demand. The particular

counterfactual strategies that we consider are motivated by recent airline practices (e.g.,

solicit passengers' reason-to-travel and auctions for upgrades) intended to raise pro�ts by

reducing allocative ine�ciencies, and our estimates provide insight into the ability of these

discriminatory mechanisms to remove each source of ine�ciency, as well as any distributional

implications across passengers.

At the core of our paper is data from the Department of Commerce's Survey of Inter-

national Air Travelers (SIAT). The SIAT includes information on passengers traveling on

routes that connect U.S. and international markets from more than 70 participating U.S.

and international airlines. The data contain detailed information on the purpose of the trip

(business or leisure), ticket class (e.g., economy or �rst class), date of purchase in advance

of the 
ight, and fare paid. Crucially for our purpose, and in contrast to a sample like

the Department of Transportation's DB1B survey, the 
ight-based sampling and richness

of passenger information in the SIAT provide a rare opportunity to gain insight into the

factors that contribute to the variability in fares and changing composition of passengers

(e.g., reason for travel and willingness to pay) as the 
ight date approaches.

Given the novelty of our data, we �rst present a rich set of descriptive statistics that reveal

1There is an extensive theoretical literature studying the implications of dynamic pricing. See, for exam-
ple, Prescott (1975); Stokey (1979); Dana (1998, 1999); Eden (1990); Courty and Li (2000); Deneckere and
Peck (2012); Board and Skrzypacz (2016); Garrett (2016); and Ely, Garrett, and Hinnosaar (2017).
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the importance of passenger heterogeneity and stochastic demand in determining pricing

dynamics within and across 
ights. We observe that approximately 15% of passengers travel

for business, but this proportion di�ers substantially across 
ights, depending on the origin

and destination. Compared to leisure passengers, business passengers tend to purchase closer

to the departure date, pay substantially more for the same cabin, and are more likely to buy

a �rst-class seat. In markets with a greater proportion of business passengers, fares for both

cabins are greater on average in each period, and fares increase substantially as the 
ight date

approaches. Despite the upward pressure from late-arriving business passengers that leads to

monotonically-increasing average prices, we observe many 
ights with non-monotonic price

paths.





We then use the model estimates for several counterfactual exercises that quantify the

magnitude of ine�ciencies due to demand uncertainty and asymmetric information. We

begin by considering the �rst-best allocation when the airline has perfect foresight and

observes preferences for all arriving passengers. In this case, the airline allocates seats to

passengers with the highest valuations, and the division of welfare then depends upon the

prices. Like Bergemann, Brooks, and Morris (2015), this de�nes an e�cient frontier on

the set of possible welfare outcomes. We �nd that current pricing practices, i.e., second-

degree discrimination, result in 81% of the �rst-best welfare. To decompose the source of



(2012); Board and Skrzypacz (2016); Stamatopoulos and Tzamos (2016); and Garrett (2016).

There is also an extensive literature in operations research on revenue management. See van

Ryzin and Talluri (2005) for a review of this literature. In terms of the empirical application

of dynamic pricing for perishable goods, our paper complements the �ndings in Sweeting

(2010), Williams (2017), Sanders (2017) and Cho et al. (2018). Our analysis is also related

to Nair (2007) and Hendel and Nevo (2013) that study inter-temporal price discrimination

with storable goods.





include only those 
ights for which we observe at least 10 nonstop tickets.

Lastly, we de�ne a market as a monopoly market if the carrier operating the 
ight provides

at least 50% of all capacity o�ered on nonstop 
ights between the origin and destination.

We maintain that such carriers have market power and are likely to price discriminate. To

minimize the chance of including non-monopoly markets, we exclude markets that have

multiple U.S. carriers. After these sample selection criteria are applied, we are left with

45,473 passenger records across 2,552 
ights in 398 markets on 85 unique carriers.

Using this sample, we classify each respondent's reason for travel into one of two cate-

gories, business or leisure.Businessincludes business, conference, and government/military,

while leisure includes visiting family, vacation, religious purposes, study/teaching, health,

and other. Further, like Borenstein (1989) and others, we make one-way and round-trip

fares comparable by dividing round-trip fares by two. In the remainder of this section, we

provide descriptive analysis of our sample that motivates the modeling assumptions we make

in Section 3.

Table 1: Summary Statistics from SIAT, Ticket Characteristics

Proportion Fare
Ticket Class of Sample Mean SD

First 9.00 818.48 839.77
Economy 91.00 425.16 357.98

Advance Purchase
0-7 Days 9.68 575.79 606.80
8-21 Days 14.56 534.27 536.67
22-35 Days 16.90 471.21 432.95
36-85 Days 21.60 439.99 402.79
� 85 Days 37.27 408.92 348.60

Travel Purpose
Leisure 86.55 426.70 371.75
Business 13.45 678.28 699.12

Note: Data from the Survey of International Air Travelers. Sample

described in the text.

2.1 Descriptive Statistics

In Table 1 we display some key statistics for relevant ticket characteristics in our sample.

From the top panel, in our sample, 91.00% of the passengers purchased economy-class tickets,

and their average fare was $425.16. This is in contrast to the 9.00% of the sample who

purchased business-class or �rst-class tickets (henceforth, we use �rst-class to refer to either
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In Figure 1(a) we plot the average price for economy fares as a function of the number of

days in advance of the 
ight that a ticket was purchased. Both business and leisure travelers

pay more if they buy the ticket closer to the 
ight date, but the increase is more substantial

for the business travelers. The solid line in Figure 1(a) re
ects the average price across both

reasons for travel. At earlier dates, the total average price is closer to the average price paid

by leisure travelers, while it gets closer to the average price paid by the business travelers as

the date of the 
ight nears. In Figure 1(b), we display the proportion of business to leisure

travelers across all 
ights, by the advance purchase categories. In the last week before the


ight, the share of passengers traveling for leisure is approximately 60%, while that share is

nearly 100% two months earlier. Taken together, Figures 1(a) and 1(b) show that business

travelers purchase nearer the 
ight date, and those markets with a greater proportion of

business travelers experience a greater increase in fares as the 
ight date approaches.

Figure 2: Histogram of Percent of Business Passengers by Market

Note: Histogram of business-travel index (BTI). The business-traveler index is the market-speci�c ratio of

self-reported business travelers to leisure travelers across the entire sample.

Observing the purpose of travel plays an important role in our empirical analysis, re
ect-

ing substantial di�erences in the behavior and preferences of business and leisure passengers.

This passenger heterogeneity across markets drives variation in pricing, and this covariation

permits us to estimate a model with richer consumer heterogeneity than the existing litera-

ture like Berry, Carnall, and Spiller (2006); Berry and Jia (2010), and Ciliberto and Williams

(2014). Further, a clean taxonomy of passenger types allows a straightforward exploration

of the role of asymmetric information in determining ine�ciencies and the distribution of

surplus that arises from discriminatory pricing of di�erent forms.
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To further explore the in
uence that this source of observable passenger heterogeneity has

on fares, we now present some statistics on across-market variation in the dynamics of fares.

Speci�cally, we �rst calculate the proportion of business travelers in each market, i.e., across

all 
ights with the same origin and destination. Like Borenstein (2010), we call this market-

speci�c ratio the business-traveler index (BTI). In Figure 2, we present the histogram of the

BTI across markets in our data. If airlines know of this across-market heterogeneity and

use it as a basis to discriminate both intra-temporally (across cabins) and inter-temporally

(across time before a 
ight departs), di�erent within-
ight temporal patterns in fares should

arise for di�erent values of the BTI.

Figure 3: Proportion of Business Travelers by Ticket Class



Figure 4: Across-Market Variation in Fares

(a) Economy

0 20 40 60 80 100 120

(b) First-Class

Note:



Figure 5: Flight-Level Dispersion in Fares

Note: The �gure presents various (10th , 25th , 75th , and 90th ) quantiles of price distribution for economy

fares as a function of days remaining until departure, estimated using kernel regression. The prices are

normalized relative to the initial (i.e., 180 days before departure) fare for that 
ight.

in the temporal patterns in fares across 
ights is attributable to both the across-market

heterogeneity in the mix of passengers, and how airlines respond to the gradual realization

of stochastic demand for a 
ight.

Airlines' fares, and their responsiveness to realized demand, depend on the number of

unsold seats. In Figure 6(a) we display the joint density of initial capacity of �rst and

economy class in our sample, adjusting for the fraction of non-stop passengers we observe in

the data. The median capacity is 116 economy seats and 15 �rst-class seats, and the mode

is 138 economy and 16 �rst-class seats. The three most common equipment types in our

sample are a Boeing 777, 747, and 737 (36% of 
ights in our sample). The 777 and 747

are wide-body jets. The 777 has a typical seating of around 350 seats (not adjusting for

non-stop versus connecting passengers) and the 737 has a typical seating of around 160 total

seats. The most common Airbus equipment is the A330, which is about 4% of the 
ights

in our sample. Across all 
ights, capacity is 88% economy class on average. We merge the

SIAT data with the Department of Transportation's T-100 segment data to get a measure of

the load factor for our SIAT 
ights. From the T100, we know the average load factor across

a month for a particular route 
own by a particular type of equipment. In Figure 6(b) we

display the density of load factor across 
ights in our sample. The median load factor is

82%, but there is substantial heterogeneity across 
ights.

Overall, our descriptive analysis reveals a number of salient features that we capture



Figure 6: Initial Capacity and Load Factor

(a) Density of Initial Capacities (b) Histogram of Load Factor

Note: In part (a) this �gure presents the Parzen-Rosenblatt Kernel density estimate of the joint-density of

initial capacities available for nonstop travel. In part (b) this �gure presents the histogram of the passenger

load factor across our sample.

Further, we �nd substantial heterogeneity in the mix of passengers (i.e., business/leisure)

across markets, which airlines are aware of and responsive to, creating variation in both

the level and temporal patterns of fares across markets. Finally, across 
ights we observe

considerable heterogeneity in whether fares decrease or increase as the 
ight date approaches.

Together, these features motivate our model of the non-stationary and stochastic demand

and dynamic pricing by airlines that we present in Section 3, and the 
exible estimation

approach in Section 4.

3 Model

In this section we present a model of dynamic pricing by a pro�t-maximizing multi-product

monopoly airline that sells a �xed number of economy (0� K e < 1 ) and �rst-class (0 �

K f < 1 ) seats. We assume passengers with heterogeneous and privately known preferences

arrive over time before the date of departure (t 2 f 0; : : : ; Tg) for a nonstop 
ight. Every

period the airline has to choose the ticket prices and the maximum number of unsold seats

to sell at those prices before demand (for that period) is realized.

Our data indicate important sources of heterogeneity in preferences that di�er by reason

for travel: willingness to pay, valuation of quality, and timing of purchase. Further, variability

and non-monotonicity in fares suggest a role for uncertain demand. The demand side of

our model seeks to 
exibly capture this multi-dimensional heterogeneity and uncertainty
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that serves as an input into the airline's dynamic-pricing problem. The supply side of our

model seeks to capture the inter-temporal and intra-temporal tradeo�s faced by an airline

in choosing its optimal policy.

3.1 Demand

Let N t denote the number of individuals thatarrive in period t 2 f 1; : : : ; Tg



Figure 7: Realization of Demand
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Figure 8: Illustration of Random Rationing Rule.

Capacity: K f = 1; K e = 2
pf = 2000;qf = 1



seats in each cabin. One of the de�ning characteristics of this market is that the airline must



because the �rm no longer faces any inter-temporal tradeo�s. The dynamic programming

characterization of the airline's problem is useful, both for identifying the tradeo�s faced by

the airline, and identifying useful sources of variation in our data.9

The optimal pricing strategy includes both inter-temporal and intra-temporal price dis-

crimination. First, given the limited capacity, the airline must weigh allocating a seat to a

passenger today versus to a passenger tomorrow, who may have higher mean willingness to

pay because the fraction of for-business passengers increases as it gets closer to the 
ight

date. This decision is complicated by the fact that both the volume (� t ) and composition (� t )

of demand changes as the date of departure nears. Thus, the perishable nature of the good

does not necessarily generate declining price paths like Sweeting (2010). Second, simultane-

ously, every period the airline must allocate passengers across the two cabins by choosing� t

such that the price and supply restriction-induced selection into cabins is optimal.

To illustrate the problem further, consider the trade-o� faced by an airline from increasing

the price for economy seats today: (i) decreases the expected number of economy seat

purchases but increases the revenue associated with each purchase; (ii) increases the expected

number of �rst-class seat purchases but no change to revenue associated with each purchase;

(iii) increases the expected number of economy seats and decreases the expected number

of �rst-class seats available to sell in future periods. E�ects (i) and (ii) capture the multi-

product tradeo� faced by the �rm, while (iii) captures the inter-temporal tradeo�. More

generally, di�erentiating Equation 4 with respect to the two prices gives two �rst-order

conditions that characterize optimal prices given a particular seat-release policy:
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future demand (i.e., variation in volume of passengers and business/leisure mix as 
ight date

nears), and the number of seats remaining in each cabin (i.e.,K f
t and K e

t ). The stochastic

nature of demand drives variation in theshadow costs, which can lead to equilibrium price

paths that are non-monotonic, and that increase or decrease on average. This 
exibility is

crucial given the variation observed in our data (see Figure 5).10

The airline can use its seat-release policy to dampen bothintra -temporal and inter -

temporal tradeo�s associated with altering prices. For example, the airline can force everyone

to buy economy by not releasing �rst-class seats in a period, and then appropriately adjust

prices to capture rents from consumers.11 Consider the problem of choosing the number

of seats to release at each periodqt ; = ( qe
t ; qf

t ) � ! t . For a choice ofqt in period t, let

pt (qt ) := f pe
t (qt ); pf

t (qt )g denote the optimal pricing functions as a function of the number of

seats released. Then, the value function can be expressed recursively as

Vt (! t ; 	) = max
qt � ! t

8
<

:
� t ((pt (qt ); qt ); ! t ; 	 t ) +

X

! t +1 2 


Vt+1 (! t+1 ; 	) � Qt (! t+1 j(pt (qt ); qt ); ! t ; 	



4.1 Model Parametrization and Solution

To retain 
exibility in our speci�cation of market heterogeneity while limiting the com-

putational burden of solving the model a large number of times, we parameterize 	 =

(f Fb; Fl ; F� ; cf ; ceg; f � t ; � tgT
t=1 ) to capture the salient features of our data.

There are two demand primitives,� t and � t , that vary as the 
ight date approaches,

such that a fully non-parametric speci�cation for both would result in a prohibitive 2� T

parameters. Motivated by our data, we chooseT = 5 to capture temporal trends in fares

and passenger's reason for travel, where each period is de�ned as in Table 1. To permit


exibility in the relationship between time before departure and these parameters, we let

� t := min
�

� � � (t � 1); 1
	

and � t := � + � � � (t � 1), where � � ; � , and � � are scalar

constants. This parametrization of the arrival process permits the volume (� and � � ) and

composition (� � ) of demand to change as the 
ight date approaches.

There are three distributions (Fb; Fl ; F� ) that determine preferences. We assume that

for-business and for-leisure valuations are drawn from normal distributions,Fb and Fl , re-

spectively, that are left-truncated at zero. Given the disparity in average fares paid by

business and leisure passengers, we assume� b � � l , which we model by letting� b = � b � � l

with � b � 1. We assume that the quality premium,� , equals one plus an Exponential random

variable with mean� � to ensure that the two cabins are vertically di�erentiated and that all

passengers weakly prefer �rst class.

Finally, we �x \peanut" costs for �rst-class and economy,cf and ce, respectively, to equal

industry estimates of marginal costs for servicing passengers. Speci�cally, we setcf = 40

and ce = 14 based on information from the International Civil Aviation Organization, Asso-

ciation of Asia Paci�c Airlines, and Doganis (2002).12 Our estimates, and the counterfactual





Turner, and Williams (2016), we posit that empirical moments can be expressed as a mixture

of theoretical moments, with a mixing distribution known up to a �nite-dimensional vector of



the S draws of 	 taken from h(	 j! 1; � 	 ; � 	 ).

The dimensionality of the integral we approximate through simulation requires a large

number of draws. After some experimentation to ensure simulation error is limited for a wide

range of parameter values, we letS = 10; 000. Thus, the most straightforward approach to

optimization of Equation 8 would require solving the modelS = 10; 000 times for each

value of (� 	 ; � 	 ) until a minimum is found. Given the complexity of the model and the

dimensionality of the parameter space to search over, such an option is prohibitive. For this

reason, we appeal to the importance sampling methodology of Ackerberg (2009).

The integral in Equation 7 can be rewritten as

Z 	

	
� (! 1; 	)

h(	 j! 1; � 	 ; � 	 )
g(	)

g(	) d	 ;

whereg(	) is a known well-de�ned probability density with strictly positive support for 	 2
�
	 ; 	

�
and zero elsewhere likeh(	 j! 1; � 	 ; � 	 )). Recognizing this, one can use importance

sampling to approximate this integral with

1
S

SX

j =1

� (! 1; 	 j )
h(	 j j! 1; � 	 ; � 	 )

g(	 j )

where theS draws of 	 are taken from g(	). Thus, the importance sampling serves to correct

the sampling frequencies so that it is as though the sampling was don32673t9050	
h(	 j! 1;



(
ight) re-sampling procedure to account for the dependence structure in our data (Lahiri,

2003).

4.3 Identi�cation

In this section, we introduce the moments that we use in (7) to estimate the market hetero-

geneity, 	 � h(�j ! 1; � 	 ; � 	 ) and present the identi�cation argument that guides our choice.

To that end, we present an argument that our moments vary uniquely with each element of

	.

Our identi�cation problem is similar to that of Nevo, Turner, and Williams (2016), who

study households that optimize their usage of telecommunications services when facing non-

linear pricing (i.e., �xed fee, allowance, and overage price) and uncertainty about their future

usage. This uncertainty introduces ashadow-price for current usage that is a function of the

overage price and probability of exceeding the usage allowance by the end of a billing cycle.

If uncertainty is substantial and varies from month to month, it creates variation in costs

useful for identifying a household's preferences.

Similarly for airlines, there is ashadow-cost associated with the sale of each seat, which

equals the expected revenue from instead selling the seat in a future period. Theseshadow-

costs depend on demand and capacity, and can vary substantially across time for a 
ight due

to the stochastic nature of demand. Our model maps theseshadow-costs to observables like

prices, timing of purchase, passenger volumes, and reason for travel. We use this mapping

to construct 
ight-speci�c moments for each of these outcomes, which we then pool across


ights with similar levels of capacity to construct aggregate moments.14 This results in a set

of empirical moments for each capacity, ^� (! 1), that we seek to match.

For a given initial capacity ! 1 and each period prior to the departure, we use the following

moments conditions: (i) the fares for economy and �rst-class tickets, for various levels of BTI,

which show in Figure 4; and (ii) the distribution of the maximum and minimum di�erences

in �rst-class and economy fares over time, i.e., maxt=1 ;:::;T (pf
t � pe

t ) and mint=1 ;:::;T (pf
t � pe

t )),

respectively, which can be derived from Figure 4 by taking the di�erence between the two

fares; (iii) the proportion of business traveler in each period and the economy/�rst-class

fares, as shown in Figure 3; (iv) the joint distribution of 
ight-BTI and proportion of total

arrivals for di�erent periods; (v) the quantiles of passenger load factor which is shown in

Figure 6(b); (vi) number of tickets, for each class, sold at various levels of BTI, which gives

us something similar to Figure 3 with the number of seats on the z-axis; and (vii) overall

proportion of business travelers, which is shown in Figure 2.

14We use a kernel density to apply less weight to 
ights with less similar capacity when constructing these
aggregate moments from the 
ight-speci�c moments.
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arrival rate is also the average number of passengers that arrive, the natural way to identify

� is to use the exact number of seats sold each period. Even though that information is not



Figure 9: Market Heterogeneity: Marginal Distributions of Demand Parameters



age desirability of the �rst-class seat is 38% greater than economy, and it varies considerably

across markets, which is consistent with the idea that a �rst-class seat is more desirable in

long-haul 
ights and for business travelers. Finally, in Panel (d) we present the marginal

distribution of �





Figure 11: Evolution of State for Modal Market and Capacity

Note: The �gure displays the contours corresponding to the joint density of unsold seats for every period.

marginal cost of a seat. The total marginal cost of a seat comprises of its \peanut" cost,

which is constant, and the opportunity cost that varies over time depending on the evolution

of the state{number of unsold economy and �rst-class seats. The shadow cost is the right-

hand side of Equation 6, the change in expected value for a change in today's price. Or

in other words, the shadow cost is the cost of future revenues to the airline of selling an

additional seat today. In Figure 11 we present the evolution of the state as is implied by

the estimates, and in Figure 12 we present the distributions of the marginal cost for an

economy and �rst-class seat, for all 5 periods, that are actually realized in equilibrium. This

graphically relates the state transitions to the shadow cost of a seat.

In Figure 11 we present the contours corresponding to the joint density of the state.

Consider! 1, which is the initial capacity for this modal capacity market. So, when we move

to the next few periods, we see that the uncertainty increases. But as we get closer to the

departure time, the contours move towards the origin, which denotes that with time fewer

seats might be left. The contour of the state at the time of departure (! dept ) denotes the

distribution of the state at the time of departure, which is consistent with the load factor

observed in our sample (see panel (b) of Figure 6). Thus we can conclude that there is a lot

of uncertainty/volatility about the demand.

One of the implications of this demand volatility is the implied volatility in the value of a
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6 Quantifying Ine�ciency and Welfare

There are two sources of ine�ciency in our model, the gradual realization of demand and

asymmetric information. The �rst source leads to ine�cient allocations of capacity because

the airline chooses policies to allocate capacity without knowledge of future demand. These

inter-cabin and inter-temporal ine�ciencies represent opportunities for welfare-improving

trade. The second source, asymmetric information, has two parts: a passenger's value for

a seat and the reason to travel. Airlines' inability to price based on an arrival's reason for

travel or even the realizations of valuations can distort the �nal allocation of seats. In this

section, we use our model estimates to simulate counterfactual outcomes to quantify the

ine�ciencies attributable to each source, and discuss how these ine�ciencies manifest as

di�erent forms of price dispersion.

6.1 Counterfactual Results

First, consider the �rst-best allocation when the airline has perfect foresight and observes

(v; � ) for all arriving passengers. In that case the �rst-best allocation is straightforward:



Figure 13: Welfare Triangle

Producer Surplus

Consumer Surplus

A: (1st -best; full extraction)

B: (1st -best; zero price )



that is run every period. Such a division of surplus is denoted by point G in Figure 13.16



Figure 14: Discrimination and Price Dispersion for Modal Market and Capacity

Note: For the modal market with modal capacity, this �gure displays price dispersion associated with the

pricing regimes corresponding to points A, E, C and D in Figure 13. For example, the two lines with circular

markers are the 25th and the 75th percentile of the economy fare, in each period, for the pricing regime D.

Other pairs of lines with the same markers are de�ned similarly.

attributable to the stochastic demand. If the airlines had used a VCG mechanism as a way

to allocate seats by time-period, their pro�t would be $73,005, which is almost 85% of the

total possible welfare.

Lastly, we calculate the welfare when airlines can third-degree price discriminate based

on reason for travel, D in Figure 13. In this scenario, pro�ts increase by more than 15%,

and business traveler welfare goes down substantially, from 7,081 to 4,206 (41%), compared

to the baseline case. As expected, leisure traveler welfare increases, but only by 1.2%.

Airlines' pro�ts increase from $58,996 to $67,573, suggesting that with better ability to price

discriminate, total welfare increases but at a cost of lower consumer welfare. In other words,

the airlines can capture the informational rents from business travelers.

7 Conclusion

We develop a model of intra-temporal and inter-temporal price discrimination by airlines that

sell a �xed number of seats of di�erent quality to heterogenous consumers arriving before a
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Table 3: Price Discrimination Counterfactuals

1st Best 2nd Degree 3rd Degree 1st Degree VCG
B C D F G

Producer Surplus 0 58,996 67,573 0 73,005
(0.00) (199.59) (210.77) (0.00) (222.87)

Consumer Surplus 92,074 16,215 13,792 86,229 13,224

(281.02) (99.26) (101.81) (256.41) (89.49)
{Business 19,372 7,081 4,206 16,893 4,754

(87.12) (34.90) (27.31) (42.57) (37.87)
{Leisure 72,702 9,134 9,586 69,336 8,470

(267.18) (92.93) (98.08) (252.86) (81.09)
Total Welfare 92,074 75,211 81,365 86,229 86,229

(281.02) (222.9) (234.07) (256.41) (240.16)
Note: In this table we present measures of welfare for six di�erent outcomes, corresponding to points A-G

in Figure 13. These calculations are performed for all market types receiving positive weight for the modal

initial capacity. Bootstrapped standard errors are in the parenthesis.
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Appendix

A.1 Uniqueness of the Optimal Policy

In this section we show that the optimal policy is unique under some regularity conditions.

These regularity conditions are widely used in the literature and ensure that demand is

decreasing in its own and cross price, and that the demand for each seat class is concave. We

begin by presenting these conditions below, but for notational ease suppress the time index.

Assumption 1. 1. (Downward Demand ):
�

@Eqe(pe ;pf )
@pe

�
� 0, and

�
@Eqf (pe ;pf )



Step 1

Here,T = 1 and for notational ease suppress the time index. The airline solves:

V(� � ) = max
pe ;pf

(
X

k= e;f

(pk
t � ck)

Z
qk(pe; pf )gk(qk(pe; pf ); pe; pf )dqk

)

= max
pe ;pf

X

k= e;f

(pk
t � ck)Eqk(pe; pf ) (A.1)

Then the equilibrium prices (pe; pf ) solve the following system of equations:

"
Eqe(pe; pf ) + ( pe � ce) @Eqe(pe ;pf )

@pe + ( pf � cf ) @Eqf (pe ;pf )
@pe

Eqf (pe; pf ) + ( pf � cf ) @Eqf (pe ;pf )
@pf + ( pe � ce) @Eqe(pe ;pf )

@pf

#

=

"
0

0

#

: (A.2)

The above system has a unique solution (pe; pf ) if the negative of the Jacobian corresponding

to the above system is aP-matrix (Gale and Nikaido, 1965). In other words, all principal

minors of the Jacobian matrix are non-positive, which follows from Assumption 1.

Step 2

Suppose we have a unique solution whenT = ~t and all �nite pair f K e; K f g. Now we want

to show that the solution is still unique if we have one additional period, i.e.,T = ~t + 1.

Consider the value function

V(� � ~t ) := max
f � t g~t

t =0

E0

" ~tX

t=0

X

k= e;f

(pk
t � ck)qk

t (� t )
�
�K f

0 ; K e
0

#

(A.3)

where � � ~t := ( � �
1; : : : ; � �

~t ) is the unique optimal policy. Now, suppose we have~t + 1 periods

to consider. So the maximization problem faced by the airline becomes

max
f � t g

~t +1
t =0

E0

" ~t+1X

t=0

X

k= e;f

(pk
t � ck)qk

t (� t )
�
�K f

0 ; K e
0

#

= max
f � t g~t

t =0

E0

"
X

k= e;f

(pk
t � ck)qk

t (� t )
�
�K f

0 ; K e
0

#

+ max
� ~t +1

X

! ~t +1 
 ~t +1

E~t+1

"
X

k= e;f

(pk
t � ck)qk

t (� t )
�
� ! ~t+1

#

Pr(! ~t+1 j� ~t )
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Figure 15: Multi-Unit Auction

Bids

Seats
1

0.25

2

0.5

3

0.75

4

1.0

5

1.25

6

1.5 Supply

Aggregate Demand

p� ( uniform-price)
r ( Vickrey-price)

Note. 4 seats are auctioned among 6 bidders, arranged in a descending order of their bids (thick red line).

All bids are aggregated to get the aggregate demand (the thick-red and dotted blue line). The supply is

�xed at 4 seats. Market-clearing price (or the uniform price) is p� = 0 :5. Bidders 5 and 6 submit the same

bid (thick red and blue part of the aggregate demand).

n < d is zero. Therefore, we see that the transition probability is a Poisson distribution with

parameter � t (1 � ~Ft (p)).

A.2 Vickrey-Groves-Clarke Auction

In this section, we explain the steps we take to implement VCG. We can explain the basic

idea behind VCG by considering an example of where we auction four seats of the same class

to potential passengers who want to buy at most one seat; see Figure 15. Each passenger

submits a bid (the price she is willing to pay for a ticket) and these bids are ranked and

aggregated to generate an aggregate demand function. The price at which the demand equals

four (or the supply) is called the cut-o� price (p� ). The airline then allocates the four seats

to those bidders who bid at leastp� . Under the uniform price auction these four passengers

pay the same (uniform) pricep� , while under discriminatory price auction they pay their

own bid. Under VCG, however, each bidder pays the opportunity cost of each seat, which

is the highest rejected bidr .

Now, we explain the auction procedure in detail. LetK f + K e = f 1; : : : ; K g be the total

number of seats available for sale in a given period. For notational simplicity, we suppress the

time index. Both the airline and the passengers consider the two classes as weak substitutes,

but within each classes each seat is a perfect substitute. Moreover, a passenger only wants
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to buy one ticket. Let Si 2 f 0; 1g � f 0; 1g denote an allocation to passengeri 2 N . For

example,Si = (1 ; 0) denotes passengeri gets only a �rst-class ticket, similarly Si = (1 ; 1)

denotes passenger gets a ticket for both classes. Since each passenger wants at most one

ticket, if at all, the passenger i's value as a vector is

v i := ( vi (0; 0); vi (0; 1); vi (1; 0); vi (1; 1)) = (0 ; v; v � �; v � � ): (A.4)

Thus it is never e�cient to give one passenger more than one ticket, if at all. To re
ect

this, we restrict the allocation rule to beSi 2 f (0; 0); (1; 0); (0; 1)g.

An allocation is then is an ordered collection (S1; : : : ; SN ) of seats amongN passengers,

such that [ i Si = K , i.e., each seat is allocated to at least one passenger, and no seat is

allocated to more than one passenger. LetV denote the space of all value vectorv =

(v1; : : : ; vN ) of passengers, and let� : V ! K denote an allocation

� (v) = < S 1(v); : : : ; SN (v) >;



which is the \externality" passengeri imposes on everybody else by being present in the

auction. Fix the value of everybody else other thani at some valuev � i . Under VCG

passengeri with value bfv i if he reports his value iszi is vi (� �
i (zi ; v � i )) �



Step 4. From the solution vectorf a�
i ((0; 0); a�

i (1; 0); a�
i (0; 1)gN

i =1 determine the total number
~K f of �rst-class seats sold, and~K e economy-class seats sold at costC = ~K f cf + ~K ece.

Step 7. Then the net e�ciency loss due to dynamic demand isSW(v)� C� utility from the data .

Step 8. The pro�t for the airline is E� (auction, given seats ) :=
P N t

i =1 Pi � C.
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