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Abstract

We construct a peer e�ects model where mean expenditures of consumers in one’s peer

group a�ect utility through perceived consumption needs. We provide a novel method

for obtaining identi�cation in social interactions models like ours, using ordinary survey

data, where very few members of each peer group are observed. We implement the

model using standard household-level consumer expenditure survey microdata from

India. We �nd that each additional rupee spent by one’s peers increases perceived

needs, and thereby reduces one’s utility, by the equivalent of a 0.25 rupee decrease in

one’s own expenditures. These peer costs may be larger for richer households, meaning

transfers from rich to poor could improve even inequality-neutral social welfare, by

reducing peer consumption externalities. We show welfare gains of billions of dollars per

year might be possible by replacing government transfers of private goods to households

with providing public goods or services, to reduce peer e�ects.
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by governments all over the world. As a result, we cannot make use of network information

or variation in peer group sizes (as in Lee 2007) to obtain identi�cation.

We estimate our model using consumption survey data from India.1 Our groups are de-





tion for identi�cation, but we cannot. Examples of such network information include the use

of exogenous variation in group composition or size (e.g., Lee 2007; Carrell, Fullerton and

West 2009; and Du
o, Dupas and Kremer 2011), or the use of detailed network structure

like intransitive triads, where data on friends of friends provides instruments for identi�ca-



2 Utility and Demand With Peer E�ects in Needs



identi�es comparable structural parameters obtained from utility-derived demand functions

via revealed preference.

A number of papers relate consumption choices to peer consumption levels, although

these analyses are essentially nonstructural (Chao and Schor 1998, Boneva 2013, de Giorgi,

Frederiksen and Pistaferri, 2016). All these papers suggest that the magnitudes of peer e�ects

in consumption choices are large. In our notation, these papers use empirical approaches

analogous to regressing qi on x i and qg. However, establishing how much consumption qi

changes when peer consumption qg changes does not answer the welfare question of how qg

a�ects utility, and hence how much one would need to increase x i to compensate for the loss

of utility from an increase in qg. Answering this type of welfare question requires linking

expenditures to utility, which is what our structural model does.

2.1 The Utility-Derived Demand Model

Our model is that each consumer, indexed by i, is a member of a peer group, indexed

by g. Note that g should have a subscript i, denoting the particular group that contains

consumer i, but we drop this subscript to avoid notational clutter. Let qi be the vector of

(continuous) quantities of goods that consumer i consumes. Utility is given by Ui = U(qi�f i ),

where Ui is the attained utility level of consumer i, U is a utility function (ignoring taste

heterogeneity for now), and f i



One can equivalently represent preferences using an indirect utility function, de�ned as

the maximum utility attainable with a given budget x i when facing prices p. Gorman (1976)

shows6 that for any regular utility function in this form, there exists a corresponding indirect

utility function V such that

Ui = V
�
p; x i � p0f (zi ; qg)

�
: (2)

Indirect utility functions of this form can be shown to have many desirable properties for

welfare calculations.7 Blackorby and Donaldson (1994) and Donaldson and Pendakur (2006)

show that the function f (without qg) is uniquely identi�ed up to location from consumer

demand functions. We show later that we can also uniquely identify how f depends on qg.

Luttmer (2005) regresses a self-reported measure of happiness on zi , yi , and byg (where

for Luttmer, yi is the income of consumer i, and byg is the observed within-group average

income). We can interpret his regression as a simpli�ed and linearized version of equation (2),

where self-reported happiness is assumed to proxy for Ui , income yi replaces x i , and all the

e�ects of qg are subsumed by byg. Table 1 (column 3) in Luttmer (2005) gives endogeneity-

corrected estimates of the coe�cients of byg and yi of �0:296 and 0:361, respectively. The

negative ratio of these is 0:82, meaning that a 100 dollar increase in group-average income

has the same e�ect on reported happiness as an 82 dollar reduction in own-income. We later

estimate an object that has a comparable interpretation to this relative coe�cient. But

instead of assuming that Ui equals an observed happiness measure that can be compared

across individuals and regressed on covariates, we let Ui be unobserved. We instead derive

demand equations from equation (2), and then recover the implied peer e�ects on utility.

The demand functions that result from maximizing our utility function can be obtained

by applying Roy’s (1947) identity to the indirect utility function of equation (2). These

demand functions have the form qi = h(p; x � p0f i ) + f i , where f i = f (zi ;



where vg is a J



we assume

V (p; x) = � (x � R (p)) �1 B (p) � D (p) (6)

for some di�erentiable functions R, B and D



geographically. In the Appendix we derive results at this added level of generality, including

t subscripts for time and price regimes.

As is standard in the estimation of continuous demand systems, we only need to estimate

the model for goods j = 1; :::; J � 1. The parameters for the last good J are then obtained

from the adding up identity that qJi =
�

x i �x





tion, "gi is given by

"gi =
�
y2

g � by2
g

�
a2d + 2

�
yg � byg

�
x i abd+

�
yg � byg

�
a. (14)

Inspection of equations (13) and (14) shows many of the obstacles to identifying and

estimating the model parameters a, b, and d. First, with either �xed or random e�ects, vg

could be correlated with byg. Second, since ng does not go to in�nity, if byg contains yi then

byg will correlate with ui . Third, again because ng is �xed, "gi doesn’t vanish asymptotically,

and is by construction correlated with functions of byg and x i . We can think of
�
y





instrument for by



using GMM with instruments r gii 0, and then recovering the parameters a, b, and d from the

estimated coe�cients. By construction, the errors in this model are correlated across the

pairs of individuals within each group, so we must cluster standard errors at the group level

to obtain proper inference.

Theorem 1 in Appendix A.2 describes these results formally, including extending this

model to allow for vector x i



However, we repeat this construction for every individual i 0 (other than i) in the group,

and use the GMM estimator to combine the resulting moments over all individuals i 0 in g,

thereby once again exploiting all of the information in the group. With this replacement,

equation (19) becomes

yi = byg;�ii 0yi 0a2d + (a + 2x i abd)byg;�ii 0 +
�
x i b+ x2

i b2d
�

+ vg + ui + e"gii 0;

where by construction the error e"gii 0 has the form

e"gii 0 =
�
y2

g � byg;�ii 0yi 0

�
a2d + (a + 2x i abd)

�
yg � byg;�ii 0

�

In Appendix A.4 we show that E (e"gii 0jx i ; r g) = �da2V ar (vg) and so equals a constant. Our

constructions in estimating the group mean eliminates correlation of the error e"gii 0 with x i .

But e"gii 0 still does not have conditional mean zero, because both byg;�ii 0 and yi 0 contain vg, so

the mean of the product of byg;�ii 0 and yi 0 includes the variance of vg.

It follows from these derivations that

E
�
yi � byg;�ii 0yi 0a2d� (a + 2x i abd)byg;�ii 0�

�
x i b+ x2

i b2d
�
� v0 j x i ; r g

�
= 0; (20)

where v0 = E (vg)� da2V ar (vg) is a constant to be estimated along with the other parame-

ters, and r g are the same group level instruments we de�ned earlier. Letting r gi be functions

of x i and r g (such as x i , r g, x2
i , and x ii



Appendix A.4 provides the formal proof of identi�cation and associated GMM estimation

for the random e�ects generic model as discussed above (and for the extension to multiple

equations), and Appendix A.6 proves that this identi�cation and estimation extends to our

full utility-derived demand model with random e�ects.

4 Empirical Results

4.1 Data

For our main empirical analysis, we use household consumption data from the 61st

round of the National Sample Survey (NSS) of India, which was conducted from July 2004

to June 2005. This survey contains information on household demographics and spending

for a representative sample of the country.

To de�ne appropriate peer groups, we exploit a property of multi-stage sampling, which

is a standard feature of the NSS and other consumption surveys. To cut down on surveying

costs, consumers are sampled from small geographic areas like villages and neighborhoods.

These areas are particularly small and relevant in urban areas, where they’re constructed to

be compact and bounded by well-de�ned, clear-cut natural boundaries whenever possible,

and so generally correspond to recognizable neighborhoods (NSS, 2019). Households in the

same neighborhood are likely to be similar to each other in observable and unobservable ways

because of assortative geographic selection, and are likely to be in at least indirect contact.

This makes them appropriate candidates for de�ning our groups, and crucially are available

as a byproduct of the sampling design in many consumption surveys.

We restrict our attention to urban households, where the geographic sampling areas

are particularly small. Each sub-block, the smallest geographic unit available in the data,

has a population of roughly 150 to 400 households. In each sub-block in our data, up to 10

households are sampled. We call this level of geography the neighbourhood. To re
ect the fact

that much social activity is within religion and caste groups, we interact the neighborhoods

with indicators of religion (Hindu or not) and caste (NSS scheduled caste/tribe or not). We

refer to these groups de�ned by neighborhood, religion, and caste as neighborhood-subcastes,

and use them as the peer groups in our analysis.14

Our sample includes all urban households in groups where we observe at least three

households, the minimum required for our method of identi�cation and estimation. To avoid

expenditure outliers, we include only households that are between the 1st and 99th percentiles

14The NSS contains information on whether the household is in a scheduled caste or tribe, but not the
exact subcaste. However, since subcastes are typically geographically concentrated, we expect that the
neighborhood-religion-scheduled caste groups will mostly capture subcastes as well.
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of household expenditure in each state. We also restrict our sample to households with 12

or fewer members, whose head is aged 20 or more. Together, these restrictions drop roughly

4% of the sample.

Table 1 shows summary statistics for our sample. The number of observed households

in each group averages around 5 (with a range from 3 to 10), which is a small share of the

several hundred households that comprise each group in the population. These small within

group samples illustrate the importance of showing identi�cation and consistent estimation

without assuming that many of the members of each group are observed.

For our main sample, we have a total of 4,599 distinct groups, and 24,757 distinct house-





Our �xed-e�ects approach involves substituting the leave-two-out within-group sample

average quantity bqgj;�ii 0 for the within-group mean qgj , and di�erencing across people within

groups. Thus, we substitute bqgj; �ii 0 for qgj in the de�nition of X i (eq. (10)) to create bX i as

bX i = x i � R11p1g � R22p2g � (A11bqg1;�ii 0 + C0
1zi ) p1g � (A22bqg2;�ii 0 + C0

2zi ) p2g,

and substitute bqgj;�ii 0 for qgj and bX i for X i in the demand equation (11). Then, we di�er-

ence the demand equation across individuals within groups to generate a moment condition

analogous to (18):

E [(p1gq1i�p1gq1i0�( bX 2
i � bX 2

i 0)e�(b 1 ln p1g +(1�b 1 ) ln p2g )d1�( bX i� bX i 0)b1+C0
1p1g (zi � zi 0))r gii 0] = 0:

(22)

Notice that, as in the generic model, many group-varying terms, including A11p1gqg1, drop

out as a result of this di�erencing. Further, since
�

bX i � bX i 0

�
= x i � x i 0�C0

1 (zi � zi 0) p1g�

C0
2 (zi � zi 0) p2g, such variables are present only in the quadratic term

�
bX 2

i � bX 2
i 0

�
via inter-

actions between group-average quantities qg1 and other elements of bX i (e.g., x i ). The formal

derivation of these moments for GMM estimation is given in Appendix A.5.

Our random-e�ects approach, derived in Appendix A.6, involves substituting the within-

group sample average quantity and another group member’s quantity for the within-group

means. We use the above de�nition of bX i



Let ezi and ezg be, respectively, the individually-varying and group-level subvectors of

zi . In our baseline model, ezi includes all covariates; however, when we consider additional

heterogeneity in peer e�ects, we will additionally include group-level covariates in ezg. Letting

� denote element-wise multiplication, our complete instrument list for the �xed-e�ects model

is:

r gii 0 =
�
x2

i � x2
i 0

�
; (x i � x i 0) � (1; pg � �q g; pg � ezg) ; pg � (ezi � ezi 0) � (1; pg � �q g) ; x i pg � (ezi � ezi 0) :

Our instrument list for the random-e�ects model is:

r gi = (1; pg; pg � �q g; pg � zi ) ; x i � (1; pg; x it ; pg � �q g; p t � zig ) ; pg � pg:

The last term provides instruments for v0 in equation (20).

Our primary focus is on the peer e�ects given by elements of the matrix A. We start

with the simplest and most interpretable version of this structural model, where A = aIJ is

a diagonal matrix with the scalar a replicated in each element of the main diagonal. In this

speci�cation, an increase in the group-average food quantity of � increases needs for food by

a� , and an increase in the group-average non-food quantity of � increases needs for non-food

nondurables by the same a� . Also, having A be diagonal means that group-average food

quantities have no e�ect on needs for non-food nondurables (and vice versa). We relax these

restrictions later.

In this restricted version of the model, the welfare implications of peer e�ects simplify.

Needs are given by f i = A qg + Cz i and group-average expenditure is given by xg = p0qg,

so when A = aIJ , the cost of needs, p0f i , simpli�es to p0f i = axg + p0Cz i . Consequently,

the scalar a equals the increase in the rupee cost of needs, p0f i , of a one rupee increase in

group-average expenditure xg.

4.4 Baseline Estimates and Alternative Group Sizes

Table 2 gives estimates of the scalar a. In our baseline model, groups are de�ned by

neighborhood-subcastes, that is, a group is people who live in the same neighborhood, are

of the same religion (either Hindu or not), and are of the same caste status (either scheduled

caste or not). For comparison, we also consider two larger group sizes: people who live in the

same neighborhood regardless of religion and caste, and people who live in the same district

regardless of religion and caste.

of our instrument vector. This dimension reduction is needed for feasibility of our GMM estimator, because
�qg is multiplied by the demographic controls to generate the �nal instrument vector.
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Note that neighborhoods have populations of roughly 150 to 400 households, of which

at most 10 are observed in our sample. Districts are much larger than neighborhoods,

with populations of roughly 500,000 to 3,000,000 households. In our data, we observe 5.4

households from the average neighborhood-subcaste, while with the larger group de�nitions

we average 6.9 and 53.1 observed households per group, respectively.

We report results for two samples. The upper half of Table 2 (Panel A) uses all the data

available for each of the three group de�nitions, and so ends up with somewhat di�erent

samples for each. Panel B holds the sample constant across the group de�nitions, using only

the observations from our baseline model (the smallest group de�nition).

Table 2 reports both random e�ects (RE) and �xed e�ects (FE) estimates of the scalar

a, for all three group sizes. Columns (1) to (3) give RE, Columns (4) to (6) give FE, and

columns (7) to (9) give the di�erence RE minus FE.

A key implementation question is how to de�ne our groups. If we de�ne them at too

large a level, we should expect the estimated peer e�ects to be biased towards zero, because

our estimate of group consumption bqgj;�ii 0 will be mismeasured by including consumption

from non-peers. We should similarly expect the signi�cance level of the estimates to fall if

the de�ned groups are too large. In contrast, if we de�ne our groups at too small a level,

the estimator will likely be consistent but ine�cient, because although we are grouping only

households that do indeed have peer e�ects on each other, in each group we will be leaving

out some informative peers who were placed in another group.

For both RE and FE, we �nd that the larger group sizes have estimates that are closer

to zero and have lower t statistics than our baseline, suggesting that our baseline groups,

while quite small, are the most appropriate size (the largest group size FE estimate actually


ips sign to negative, but is not statistically signi�cant). We therefore focus our remaining

analyses on the baseline neighborhood-subcaste group de�nition, reported in columns (3)

and (6), and the di�erence between them in column (9).18

As expected, the RE estimates have far lower standard errors than the FE estimates,

because they are based on much stronger assumptions, and do not lose information from

di�erencing. The RE point estimate of 0:606 in column (3) also turns out to be much larger

than the FE estimate of 0:266 in column (6), and we reject equality of the coe�cients (column

(9)).

18



Random e�ects imposes strong restrictions on unobserved heterogeneity that may not

be valid, and that �xed e�ects do not impose, potentially biasing the RE estimates. In

particular, our estimated positive di�erence between RE and FE estimates is consistent with

group-level preferences for food consumption vgj being correlated with group expenditure

levels, causing upward bias in the RE peer e�ects estimates. This is easiest to see in a

simpli�ed version of equation (13). Suppose that the true model was linear (so d = 0),

and we instrumented for byg only with other-period group consumption bxg;�t . Then, positive

correlation between group expenditure and group tastes (conditional on x i ) would result in

upwards bias in the estimated peer e�ects for normal goods like food.

In applications like ours where RE has much lower variance than FW (as indicated by

standard errors) and is likely to be biased, to reduce mean squared errors it is common to

employ shrinkage estimators. These are constructed as weighted averages of RE and FE

estimates, trading o� the bias of RE with the higher variance of FE (a recent example is

Armstrong, Koles�ar, and Plagborg-M�ller 2020). We report both the RE and FE estimates in

our remaining empirical analyses, so one may implement such shrinkage if desired. However,

for simplicity in our later policy discussions, we will focus on the smaller FE coe�cients



4.5 Measurement Error in Group Means

The neighborhood-subcaste groups in our baseline analysis each have between 3 and 10

observed households, out of an average of around 200 households in the population. This

suggests that the group mean measurement errors bqgj �qgj are likely to be substantial. Much



would be consistent in the absence of measurement error, we can form a Hausman test to

compare the estimators, and the uncorrected estimators are rejected.

The direction and size of bias is di�erent for the FE estimator. Here, at all three group

sizes, the uncorrected estimates are about twice as large as the corrected, suggesting a

signi�cant impact of nonlinearity and di�erencing on the size and direction of bias in the

FE models. As with the RE models, the uncorrected FE estimates have smaller standard

errors than the corrected estimates, and Hausman tests reject the uncorrected estimates.

We conclude that our corrections for measurement errors due to small within group sample

sizes are empirically justi�ed and important.

4.6 Alternative Speci�cations and Robustness Checks

4.6.1 Peer e�ects by demographic groups

In Tables 2 and 3, the peer e�ect parameter a



indicator, de�ned to equal to 1 if the household head has at least high school education and

zero otherwise. Here the FE and RE models disagree, with the FE model showing the more

educated households having larger peer e�ects, while the RE model shows the opposite.

Particularly when focusing on the FE estimates, our estimated peer e�ects are larger for

higher socio{economic status groups. A possible explanation is that the poorest households

in India are close enough to subsistence that it is more costly to engage in status competitions.

This is similar to Akay and Martinsson’s (2011) �nding for very poor Ethiopians.

4.6.2 Cross Group Peer E�ects

Our baseline estimates allow only for within-group consumption peer e�ects. However, con-

ceptually, it is possible that needs could depend on consumption levels of other \nearby"

peer groups. Our baseline grouping structure is neighbourhood-subcaste, so that in a given

neighbourhood, there could be several groups de�ned by varying religion and caste. In this

subsection, we consider the possibility that peer e�ects may be relevant between groups,

and that, in particular, needs may be \upward-looking" or aspirational, in the sense that

perceived needs are a�ected by the consumption behaviour of our betters in the social hi-

erarchy. We operationalize this by focusing on a subset of 564 groups that are low-caste



4.6.3 Peer E�ects with Alternative Speci�cations of the A Matrix

Next, Table 6 considers what happens when we relax the restriction that A



opposite signs and greatly increased standard errors, and even more extreme estimates in

column (4) where all four elements of A have impossibly large magnitudes and varying signs.

These are all common hallmarks of substantial positive multicollinearity.

We should expect that the multicollinearity issues among the pj qkg terms would be much

more severe in the FE model, and not just because it is based on a weaker set of assumptions.

The identi�cation of A in the FE estimator comes only from interaction terms between each

pj qkg and the budget x i . This is due to the fact that the level terms for each pj qkg get

di�erenced away. In contrast, the identifying variation for A in the RE estimator comes

from both the level terms pj qkg and their interactions with x i .

We take from these results that the multicollinearity of group-average expenditures is

too severe in our data to get trustworthy estimates of variation in the elements of A in our

preferred �xed e�ect speci�cation, however, our baseline restriction A = aIJ appears to be

reasonable and adequate.

4.6.4 A Three Goods Model

All the models presented so far have been demand systems with J = 2 goods (food and

non-food). When J = 2, we only need to estimate a single demand equation (since the

other is determined by the restriction that consumers exhaust their budget). However, our

theorems show identi�cation of peer e�ect parameters in demand systems where J is any

number of goods. In Table 7, we present estimates of a J = 3 equation demand model,

having two equations we need to estimate. The 3 goods are taken to be food, fuel and other

nondurable goods. The former non-food category is now divided into fuel and other, so total

expenditures x i for each household remains the same as before.

We report estimates for the RE and FE models, with an unrestricted diagonal A matrix

in columns (1) and (3) of Table 7, and with the restriction that A = aIJ in columns (2) and

(4). As before, groups are de�ned at the neighborhood-subcaste level.

In the RE models, a in column (2) and the varying diagonal elements of A in column

(1) are all signi�cant and larger than before, ranging from 0:740 to 0:938. Since adding

more goods should not increase the magnitude of the overall peer e�ects, we take this as

additional evidence that the restrictions imposed by the RE model may not hold, and are

likely inducing an upward bias. We also perform a Hausman test of the RE model against



two goods baseline model. We take this as additional evidence in favor of the FE model with

A = aIJ .

4.6.5 Alternative Classi�cations of Goods

Previous research on peer e�ects in consumption has emphasized the possibility that such



Note that \visible" is dominated by food (because food-at-home and food-out together

make up the single-largest expenditure component, and all food expenditures are classi�ed as

visible expenditures), whereas \luxury" and \visible luxury" are dominated by food-out. For

the FE models, the point-estimates for \visible" are (not surprisingly) similar to our baseline

based on food. Models based on \luxury" or \visible luxury" give point-estimates of a that

are larger than those for \visible". The most precisely estimated of these FE models is that

which contrasts visible to invisible expenditures. Here, the point-estimate of a is 0:418, with

an estimated standard error of 0:115. This is roughly one standard error above our baseline

estimate of 0:266.

We draw three conclusions from these alternative speci�cations of the classi�cation of

goods. First, the demand system we choose to estimate does make a di�erence when it

comes to the magnitude of the estimated peer e�ect. Second, even with these quite di�erent

classi�cations of goods, we �nd large and statistically signi�cant peer e�ects for all of them.

Third, given the large estimated standard errors for FE models, the general picture we obtain

is similar between the baseline speci�cation and these alternatives. Overall, our baseline FE

model appears to give a conservative signi�cant estimate of peer e�ects at a = 0:266.

4.7 Are Peer Expenditures Really Negative Externalities?

Our �ndings suggest that higher peer expenditures makes consumers behave, at the

margin, as if they were poorer. We take this to mean that, in a welfare sense, they feel

poorer. While peer expenditures may in theory have both positive and negative e�ects, our



quintiles. Since the same granular geographic identi�ers are not available in the WVS, we

de�ne groups using the intersection of state and religion, and identify average expenditure

for each group using the NSS data.

Interpreting ordinal self-reported well-being as a crude measure of utility, we regress this

self-reported well-being on one’s own income bin and on the average expenditure in one’s

group. The results are reported in Table A2 in the Appendix. We �nd that the resulting

coe�cient estimates have signs that are consistent with our theory: higher income increases

self reported well being, but higher group expenditure decreases it. A 1,000 rupee increase

in peer group expenditure (relative to a mean of 5,554, with standard deviation of 2,580)

decreases self reported well being by 15% of a standard deviation, which is in line with the

welfare e�ects we found using our structural model.23 As we discuss in Appendix B.2, these

e�ects of peer expenditure are similar throughout the distribution of own income, consistent

with our linear index structure for peer e�ects.

5 Implications for Tax and Transfers Policy

Our �nding that perceived needs rise with peer group average consumption has sig-

ni�cant implications for policies regarding redistribution, transfer systems, public goods

provision, and economic growth. In this section we provide some crude, back of the envelope

calculations that illustrate the rough magnitudes that our estimated peer e�ects have on

policy questions.

Our model is one where consumption has negative externalities on one’s peers. Boskin and

Shoshenski (1978) consider optimal redistribution policies in models with general consump-

tion externalities. They show that distortions due to negative externalities from consumption

onto utility can generally be corrected by optimal taxation. In particular, their results imply

that negative consumption externalities make the marginal cost of public funds lower than

it would otherwise be. Here we apply the same logic to our estimated consumption peer

e�ects, and in particular show how large free lunch gains may be possible.

A potentially peculiar attribute of our model is that it could be social welfare improving

23In principle, one could use self reported well being data to estimate a, the e�ect of peer expenditure in
money-metric terms. There are three issues with this approach. First, self reported well being is generally
crudely measured and may not be interpersonally comparable. Second, few if any existing datasets record
both consumption and self reported well being. Third, this approach (as well as that of other papers in
the literature, such as Luttmer (2005), that apply this approach) relies on a random-e�ects assumption that
expenditures are uncorrelated with other determinants of self reported well being. A key advantage of our
utility-derived demand model is that the FE approach allows identi�cation even when group preferences are
correlated with group expenditures. Given these issues, we take the self reported well being results here



to transfer income from someone with poor peers to someone else of equal income who

has rich peers. This is not a speci�c feature of our model; similar implications can arise

as long as peer spending negatively a�ects individual utility. As a practical matter, we

rule out such transfers, by only considering tax and transfer programs that are based on

personal income rather than peer group membership. Many of our conclusions then follow

from the observation that the demographics that determine peer group membership (e.g.,

education and neighborhoods) strongly correlate with income. So, e.g., transfers from high to

low income households will on average transfer resources from higher socio-economic status

groups to lower status groups.

As discussed in Section 2, the sum (over households) of income minus the sum of spending

on needs (as we de�ne them) is a valid money-metric social welfare index. This means that

if needs go down, all else equal, social welfare goes up. Consider the money metric costs

in lost utility of, say, an across-the-board tax increase. This tax increase lowers average

expenditures by households, which in turn lowers perceived needs, thereby o�setting some

of the utility that was lost by having to pay the tax.

For simplicity, round our conservative baseline estimate of a = 0:266 to 1=4. Suppose

you experience a 4 rupee tax increase, and for simplicity let your marginal propensity to

consume be 100%. If your peers also have their taxes increase by the same amount, then

your loss in utility will only be equivalent to that of a 3 rupee tax increase. The reason is

that although your net income, and therefore expenditure, will have dropped by 4 rupees,

so will have that of your peers. Consequently, your needs will have dropped by 1=4� 4 = 1

rupee, so that your net loss in money-metric utility is only 3 rupees.

However, to fully evaluate the e�ect of this tax increase, we must also consider potential

peer e�ects in how the government uses the additional tax revenue. If the money is trans-

ferred to other groups of consumers who also have peer e�ect spillovers of a = 1=4, then

the welfare gains from reduced expenditures on needs by the taxed consumers will be o�set

by the welfare losses associated with increased perceived needs by the recipients of those

transfers.

There are two ways we can reduce or eliminate these o�setting welfare losses, thereby

exploiting the potential free lunch associated with the reduced perceived needs from taxing

peers. One way is to transfer the tax revenues to individuals in groups that have smaller

peer e�ects, and the other could be to spend the tax revenue on public goods or government

services.

We found some evidence that the size of the peer e�ects may be smaller for poorer and less

educated groups than for other consumers. If so, then transfers from higher income to lower

income individuals will lead to an overall increase in social welfare, by reducing the total neg-
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ative consumption externalities of peer e�ects. This is true even with an inequality-neutral





more rupees (say, because of a tax cut) is the same as the increase in utility you would get

from spending only 100 � 26 = 74 more rupees if no one else in your peer group increased

their spending.

These results can at least partly explain the Easterlin (1974) paradox, in that income

growth over time, which increases people’s consumption budgets, results in lower utility

growth than is implied by standard demand models that ignore peer e�ects.

These results also suggest that income or consumption taxes can have far lower negative

e�ects on consumer welfare than are implied by standard models. This is because a tax that

reduces my expenditures by 100 rupees will, if applied to everyone in my peer group, have

the same e�ect on my utility as a tax of only 74 rupees that ignores the peer e�ects. This

implies that about a fourth of the money people might get back from an across the board

tax cut doesn’t increase utility, but instead is spent on increased perceived needs due to peer

e�ects. The larger these peer e�ects are, the smaller are the welfare gains associated with

tax cuts or mean income growth. We show this is particularly true to the extent that taxes

are used to provide public goods or government services (that are less likely to induce peer

e�ects themselves) rather than transfers.

We provide some calculations showing that the magnitudes of these peer e�ects on social

welfare calculations, which are ignored by standard models of government tax and spending

policies, can be very large. For example, we �nd potential welfare gains of hundreds of

billions of rupees could be available in just a single existing government transfer program in

India. We �nd similarly that the welfare gains in transfers from richer to poorer households

(and more generally from progressive vs 
at taxes) may be much larger than previously

thought, to the extent that poorer households do indeed have smaller peer e�ects than

richer households.
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7 Tables

Table 1: Summary statistics for consumption data



Table 2: Estimated peer e�ects by group de�nition

RE FE Di�erence

District Neighborhood

Neighbor-
hood-
caste District Neighborhood

Neighbor-
hood-
caste District Neighborhood

Neighbor-
hood-
caste

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: All data

A (group consumption) 0.334��� 0.558��� 0.606��� -0.228� 0.088 0.266�� 0.562��� 0.470��� 0.341���

(0.044) (0.036) (0.036) (0.138) (0.121) (0.119) (0.131) (0.115) (0.114)

J overid stat 14138.36 1264.97 653.76 22426.79 2130.89 1305.88
p-value 0.000 0.000 0.000 0.000 0.000 0.000

N pairs 3,761,688 195,282 128,640 3,761,688 195,282 128,640 3,761,688 195,282 128,640
N households 30,184 29,462 24,757 30,184 29,462 24,757 30,184 29,462 24,757
N groups 568 4,282 4,599 568 4,282 4,599 568 4,282 4,599
Average group size 53.14 6.88 5.38 53.14 6.88 5.38 53.14 6.88 5.38



Table 3: Estimated peer e�ects by measurement error correction

RE FE

District Neighborhood

Neighbor-
hood-
caste District Neighborhood

Neighbor-
hood-
caste

(1) (2) (3) (4) (5) (6)

Panel A: Naive (no correction)

A (group consumption) 0.143��� 0.038�� 0.054��� 0.470�� 0.559��� 0.529���

(0.031) (0.017) (0.016) (0.215) (0.089) (0.090)

J overid stat 11354.53 1340.51 1013.93 17386.44 1651.41 1300.67
p-value 0.000 0.000 0.000 0.000 0.000 0.000

N pairs 2,564,578 150,184 128,640 2,564,578 150,184 128,640
N households 24,757 24,757 24,757 24,757 24,757 24,757
N peer groups 564 3,941 4,599 564 3,941 4,599
Average group size 43.90 6.28 5.38 43.90 6.28 5.38

Panel B: BaselineE68	 66150,1868	 66150,18.1d [t757



Table 4: Peer e�ects by demographic group

RE FE

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.606��� 0.606��� 0.600��� 0.694��� 0.266�� 0.255�� 0.078 0.145
(0.036) (0.035) (0.057) (0.041) (0.119) (0.121) (0.125) (0.143)

Scheduled non-Hindu 0.168�� 0.130
(0.066) (0.237)

Scheduled Hindu 0.247��� -0.285
(0.087) (0.330)

Non-scheduled non-Hindu 0.179��� -0.075
(0.055) (0.153)

Owns land 0.031 0.446���

(0.054) (0.136)
High school or greater -0.186��� 0.454���

(0.057) (0.163)

p-value heterogeneity 0.00 0.56 0.00 0.68 0.00 0.01



Table 5: Peer e�ects of own-group and out-group spending

RE FE

(1) (2) (3) (4)
Own-group Upper caste Own-group Upper caste

A (group consumption) 0.802��� 0.052 0.445��� 0.011
(0.070) (0.039) (0.138) (0.302)

Number of pairs 8,962 8,962 8,962 8,962
Number of groups 564 564 564 564

Dependent variable is household food spending. Individual controls include household
size, age, marital status and amount of land owned. All models include price controls.



Table 6: Peer e�ects by A matrix speci�cation

RE FE

(1) (2) (3) (4) (5) (6)

A (group food on food consumption) 0.411�� 0.639��� 0.606��� 9.741��� 2.228��� 0.266��

(0.171) (0.036) (0.036) (2.066) (0.382) (0.119)
A (group non-food on non-food consumption) 0.452��� 0.572��� 0.606��� 5.400��� -0.911��� 0.266��

(0.171) (0.034) (0.036) (1.577) (0.276) (0.119)
A (group food on own non-food consumption) -0.397 -7.695���

(0.275) (1.828)
A (group non-food on own food consumption) -0.095 -6.383���

(0.102) (1.860)

p-value equality 0.896 0.001 0.000 0.000
p-value diagonal 0.002 0.000
N pairs 128,640 128,640 128,640 128,640 128,640 128,640
N households 24,757 24,757 24,757 24,757 24,757 24,757
N peer groups 4,599 4,599 4,599 4,599 4,599 4,599

Selected estimates for structural demand model, Controls include household size, age, marital status, land owned,

ration card indicator, education, religion, and group size. Standard errors clustered at the district level. �� p < 0:05,
��� p < 0:01
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Table 7: Estimated peer e�ects in a three-good demand system

RE FE

(1) (2) (3) (4)

A (group food on food consumption) 0.848��� 0.932��� 2.393��� 0.296���

(0.023) (0.014) (0.426) (0.100)
A (group fuel on own fuel consumption) 0.938��� 0.932��� 2.820��� 0.296���

(0.018) (0.014) (0.913) (0.100)
A (group other on own other consumption) 0.740��� 0.932��� -1.387��� 0.296���

(0.023) (0.014) (0.334) (0.100)

Hausman H 42.151 41.701
p-value 0.00 0.00

p-value equality 0.000 0.000
N pairs 128,640 128,640 128,640 128,640



Table 8: Peer e�ects in spending, by consumption categorizations

RE FE

(1) (2) (3) (4) (5) (6)
Lux Visible Vis. lux Lux Visible Vis. lux

A (group consumption) 0.546��� 0.401��� 0.581��� 0.758��� 0.418��� 0.654���

(0.079) (0.084) (0.132) (0.207) (0.115) (0.132)
Number of pairs 128,974 128,974 128,974 128,974 128,974 128,974



Appendix for Consumption Peer

E�ects and Utility Needs in India
Arthur Lewbel, Samuel Norris, Krishna Pendakur, and Xi Qu

Appendix A: Derivations

A.1 Peer E�ects as a Game

The interactions of peer group members may be interpreted as a game. We assume that

group members have utility functions that depend on peers only through the true mean

of the peer group's outcomes. More precisely, what we are assuming is that there is an

underlying distribution of the (in�nite) population of potential group members. Everyone

who is actually in the group in the real world population is a draw from this underlying

potential population. Each individual in the group knows the true mean of this distribution

that individuals are drawn from, and bases their behavior on that true mean. This model

implies that the individual's own choice has zero e�ect on the group mean."

If group members observe each other's private information and make decisions simultane-

ously (corresponding to a complete information game), then we assume that each individual's

actual behavior will only depend on others through the group mean. Estimation of com-

plete games typically depends on having data on all members of each observed group. An



A.2 Generic Model Identi�cation and Estimation With Fixed Ef-

fects

Let yi denote an outcome andx i denote aK vector of regressorsxki for an individual i. Let

i 2 g denote that the individual i belongs to groupg. For each groupg; assume we observe

ng =
P

i2g 1 individuals, whereng is a small �xed number which doesnot go to in�nity. Let

yg = E (yi j i 2 g), byg;�ii 0 =
P

l2g;l 6=i;i0 fects

=



We assume that the number of groupsG



Taking the within group expected value of this expression gives

yg = y2
gda2 + a(2db0xg + 1) yg + db0xx 0

gb + b0xg + vg: (A3)

so the equilibrium value ofyg must satisfy this equation for the model to be coherent. If

a = 0, then we get yg = db0xx 0
gb + b0xg + vg which exists and is unique. Ifa 6= 0, meaning

that peer e�ects are present, then equation (A3) is a quadratic with roots

yg =
1 � a(2b0xgd + 1) �

q
[1 � a(2b0xgd + 1)] 2 � 4a2d[db0xx 0

gb + b0xg + vg]

2a2d
: (A4)

Note that regardless of whethera = 0 or not, yg is always a function ofxg, xx 0
g, and

vg.If the inequality in Assumption A2 is satis�ed the this yields a quadratic inyg, which, if

a 6= 0, has real solutions and having a solution means that an equilibrium exists. Ifa does

equal zero, then the model will trivially have an equilibrium (and be identi�ed) because in

that case there aren't any peer e�ects. We do not take a stand on which root of equation

(A4) is chosen by consumers, we just make the following assumption.

Assumption A3: Individuals within each group agree on an equilibrium selection rule.

The equilibrium of yg therefore exists under Assumption A2 and is unique under As-

sumption A3.

For identi�cation, we need to remove the �xed e�ect from equation (A1), which we do by

subtracting o� another individual in the same group. For each (i; i 0) 2 g, consider pairwise

di�erence

yi � yi 0 = 2adygb0(x i � x i 0) + db0(x i x0
i � x i 0x0

i 0)b + b0(x i � x i 0) + ui � ui 0

= 2adbyg;�ii 0b0(x i � x i 0) + db0(x i x0
i � x i 0x0

i 0)b + b0(x i � x i 0) + ui � ui 0 � 2ad"yg;�ii 0b0(x i � x i 0);

(A5)

where the second equality is obtained by replacingyg on the right hand side with byg;�ii 0 �

" yg;�ii 0. In addition to removing the �xed e�ects vg, the pairwise di�erence also removed

the linear term ayg, and the squared termda2y2
g. The second equality in equation (A5)

shows that yi � yi 0 is linear in observable functions of data, plus a composite error term

ui � ui 0 � 2ad"yg;�ii 0b0(x i � x i 0) that contains both " yg;�ii 0 and ui � ui 0. By Assumption A1,
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ui � ui 0 is conditionally mean independent ofx i and x i 0. It can also be shown that

" yg;�ii 0 = byg;�ii 0 � yg =
1

ng � 2

X

l2g;l 6=i;i0

�
2adygb0(x l � xg) + db0(x lx0

l � xx 0
g)b + b0(x l � xg) + ul

�

= 2adygb0" xg;�ii 0 + b0" xxg;�ii 0bd + b0" xg;�ii 0 + bug;�ii 0;

where

" xg;�ii 0 =
1

ng � 2

X

l2g;l 6=i;i0

(x l � xg) ; " xxg;�ii 0 =
1

ng � 2

X

l2g;l 6=i;i0

�
x lx0

l � xx 0
g
�

:

Substituting this expression into equation (A5) gives an expression foryi � yi 0 that is linear

in byg;�ii 0(x i � x i 0), (x i x0
i � x i 0x0

i 0), (x i � x i 0), and a composite error term.

In addition to the conditionally mean independent errorsui � ui 0 and bug;�ii 0, the compo-

nents of this composite error term include" xg;�ii 0 and " xxg;�ii 0, which are measurement errors

in group level mean regressors. If we assumed that the number of individuals in each group

went to in�nity, then these epsilon errors would asymptotically shrink to zero, and the the

resulting identi�cation and estimation would be simple. In our case, these errors do not go

to zero, but one might still consider estimation based on instrumental variables. This will

be possible with further assumptions on the data.

In the next assumption we allow for the possibility of observing group level variablesr g

that may serve as instruments forbyg;�ii 0. Such instruments may not be necessary, but if such

instruments are available (as they will be in our later empirical application), they can help

both in weakening su�cient conditions for identi�cation and for later improving estimation

e�ciency.

Assumption A4: Let r g be a vector (possibly empty) of observed group level instru-

ments that are independent of eachui . AssumeE
�
(x i �



i 2 g) = 0 and E (" ix "0
ix j xg; r g for i 2 g) = E (" ix "0

ix j i 2 g). To see this, we have

E(x i x0
i � xx 0

g j i 2 g;xg; r g) = E[(" ix + xg)(" ix + xg)0 j i 2 g;xg; r g] � xx 0
g

= E(" ix "0
ix j i 2 g;xg; r g) + E(x i ji 2 g)E (x j 2 g E(x ix j 2 g

= E(" ix "0
ix j i 2



Equation (A7) is linear in theseL variables and so could be estimated by GMM. This linearity

also means they can be aggregated up to the group level as follows. De�ne

� g = f(i; i 0) j i and i 0 are observed,i 2 g; i0 2 g; i 6=i 0g:

So � g is the set of all observed pairs of individualsi and i 0 in the group g. For ` 2

f1; 2k;3k;4kk0 j k; k0 = 1; :::; K g; de�ne vectors

Y `g =

P
(i;i 0)2� g

L `gii 0r gii 0

P
(i;i 0)2� g

1
:

Then averaging equation (A7) over all (i; i 0) 2 � g gives the unconditional group level moment

vector

E

 

Y 1g �
KX

k=1

bkY 2kg � 2ad
KX

k=1

bkY 3kg � d
KX

k=1

KX

k0=1

bkbk0Y 4kk0g

!

= 0: (A8)

Suppose the instrumental vectorr gii 0 is q dimensional. Denote theq� (K 2 + 2K ) matrix

Y g = (Y 21g; :::Y 2Kg ; Y 31g; :::Y 3Kg ; Y 411g; � � � ; Y 4KKg ). The following assumption ensures

that we can identify the coe�cients in this equation.

Assumption A5: E(Y 0
g)E (Y g) is nonsingular.

Theorem 1 : Given Assumptions A1-A5, the coe�cientsa; b; d are identi�ed from

(b 0; 2adb0; db1b0; � � � ; dbK b0)0 =
�
E(Y 0

g)E (Y g)
�



arg min

"
1
G

GX

g=1

 

Y 1g �
KX

k=1

bkY 2kg � 2ad
KX

k=1

bkY 3kg � d
KX

k=1

KX

k0=1

bkbk0Y 4kk0g

!# 0

� b


"
1
G

GX

g=1

 

Y 1g �
KX

k=1

bkY 2kg � 2ad
KX

k=1

bkY 3kg � d
KX

k=1

KX

k0=1

bkbk0Y 4kk0g

!#

(A9)

for some positive de�nite moment weighting matrix b
. In equation (A9), each group g

corresponds to a single observation, the number of observations within each group is assumed

to be �xed, and recall we have assumed the number of groupsG goes to in�nity. Since this

equation has removed thevg terms, there is no remaining correlation across the group level

errors, and therefore standard cross section GMM inference will apply. Also, with the number

of observed individuals within each group held �xed, there is no loss in rates of convergence

by aggregating up to the group level in this way.

One could alternatively apply GMM to equation (A7), where the unit of observation

would then be each pair (i; i 0) in each group. However, when doing inference one would then

need to use clustered standard errors, treating each groupg as a cluster, to account for the

correlation that would, by construction, exist among the observations within each group. In

this case,

�
ba;bb1; :::bbK ; bd

�
= arg min

 P G
g=1

P
(i;i 0)2� g

mgii 0

P G
g=1

P
(i;i 0)2� g

1

! 0

b


 P G
g=1

P
(i;i 0)2� g

mgii 0

P G
g=1

P
(i;i 0)2� g

1

!

; (A10)

where

mgii 0 =

 

L1gii 0 �
KX

k=1

bkL2kgii 0 � 2ad
KX

k=1

bkL3kgii 0 � d
KX

k=1

KX

k0=1

bkbk0L4kk0gii 0

!

r gii 0:



of our survey. For example, we might letr g includebxgt� =
P

s6=t

P
i2gs x i =

P
s6=t

P
i2gs 1 where

s indicates the period andt



From

yji = dj (y0
gaj )2 + 2y0

gaj dj x0
i b j + b0

j x i x0
i b j dj + y0

gaj + x0
i b j + vjg + uji ;

we have the equilibrium

yjg = dj (y0
gaj )2 + 2dj y0

gaj x0
gb j + b0

j xx 0
gb j dj + y0

gaj + x0
gb j + vjg

and the leave-two-out group average

byjg;�ii 0 = dj (y0
gaj )2 + 2dj y0

gaj bx0
g;�ii 0b j + b0

j
cxx 0

g;�i b j dj + y0
gaj + bx0

g;�ii 0b j + vjg + bujg; �ii 0:

Therefore, the measurement error is

" yjg;�ii 0 = byjg; �ii 0 � yjg = 2dj y0
gaj "0

xg;�ii 0b j + b0
j " xxg;�ii 0b j dj + "0

xg;�ii 0b j + bujg;�ii 0:

Using the same analysis as in Appendix A.2,

yji � yji 0 = 2dj by0
g;�ii 0aj (x i � x i 0)0b j + dj b0

j (x i x0
i � x i 0x0

i 0)b j + (x i � x i 0)0b j + uji � uji 0

� 2dj "0
yg;�ii 0aj (x i � x i 0)0b j :

Therefore, for j = 1; :::; J , we have the moment condition

E
�
(yji � yji 0 � (x i � x i 0)0b j � 2dj by0

g;�ii0 aj (x i � x i 0)0b j � dj b0
j (x i x0

i � x i 0x0
i 0)b j )jr gii 0

�
= 0:

Denote

L1jgii 0 = ( yji � yji 0),L 2kgii 0 = ( xki � xki 0),L 3jkgii 0 = byjg;�ii 0(x ki � xki 0),L 4kk0gii 0 = xki xk0i � xki 0xk0i 0:

For ` 2 f 1j; 2k;3jk; 4kk0 j j = 1; :::; J ; k; k0 = 1; :::; K g; de�ne vectors

Y `g =

P
(i;i 0)2� g

L `gii 0r gii 0

P
(i;i 0)2� g

1

and the identi�cation comes from the group level unconditional moment equation

E

 

Y 1jg �
KX

k=1

bjk Y 2kg � 2dj

JX

j 0=1

KX

k=1

ajj 0bjk Y 3j 0kg � dj

KX

k=1

KX

k0=1

bjk bjk 0Y 4kk0g

!

= 0;

10



wherebjk is the kth element ofb j and ajj 0 is the j 0th element ofaj :

Let the q�(K 2+2K ) matrix Y g = ( Y 21g; :::Y 2Kg ; Y 311g; Y 312g; :::Y 3JKg ; Y 411g; � � � ; Y 4KKg )



where

mgii 0 =

0

B
B
@

L11gii 0r gii 0

...

L1Jgii 0r gii 0

1

C
C
A �

0

B
B
B
B
B
@

KPB.



where

e"gii 0 =
�
y2

g � byg;�ii 0yi 0

�
a2d + a(1 + 2b 0x i d)

�
yg � byg;�ii 0

�

= �(" yg;�ii 0 + " y;i 0)yga2d � " yg;�ii 0" y;i 0a2d � a (1 + 2b 0x i d) " yg;�ii 0:

Formally, we make the following assumptions.

Assumption A6: For any individual l , vg is independent of (xl ; xg; xx 0
g), the error term

ul , and measurement errors" xl and " xxl .

Assumption A7: For each individual l in group g, conditional on (xg; xx 0
g) the mea-

surement errors" xl and " xxl are independent across individuals and have zero means.

Assumption A8: For each group g, vg is independent across groups withE(vgjx; xg; xx 0
g) =

� and we have the conditional homoskedasticity thatV ar(vgjx; xg; xx 0
g) = � 2.

Let v0 = ��da 2� 2. It follows from Assumptions A6-A8 that, for anyl 6=i, E(yg" yl jx i ; xg; xx 0
g) =

0 and E(" yl x i jx i ; xg; xx 0
g) = 0. Hence, E(e"gii 0jx i ; xg; xx 0

g) = �da 2E(" yg;�ii 0" y;i 0jx i ; xg; xx 0
g) =

�da 2V ar (vg) and

E(vg + ui + e"gii 0 j xg; xx 0
g; x i ) = � � da2� 2 = v0: (A15)

By construction vg+ ui + e"gii 0 is also independent ofr g. Given this, equation (20) then follows

from equations (A14) and (A15).

A.5 Identi�cation and Estimation of the Demand System With

Fixed E�ects

Here we outline how the parameters of the demand system are identi�ed. This is followed

by the formal proof of identi�cation, based on the corresponding moments we construct for



We show identi�cation of the parameters of the demand system (8) in two steps. The �rst

step identi�es some of the model parameters by closely following the identi�cation strategy of

our simpler generic model, holding prices �xed. The second step then identi�es the remaining

parameters based on varying prices. We summarize these steps here, then provide formal

assumptions and proof of the identi�cation in the next section.

For the �rst step, consider data just from a single time period and region, so there is no

price variation and p can be treated as a vector of constants.

We distinguish between elements ofz that vary at the individual versus group level,

writing C asC =
�

eC : D
�

for submatriceseC and D , and replacingCz i in Equation 9 with

Cz i = eCezi + Dezg, whereezi is the vector of characteristics that vary across individuals in a

group andezg are group level characteristics.

Let � = A 0p, � = p1=20Rp 1=2, e
 = eC0p, � = D 0p, � = b=p, Cz i = eCezi + Dezg,

r j = r jj + 2
P

k>j r jk p�1=2
j p1=2

k , and m =
�
e�b 0 ln p

�
d=p with constraints of b01 = 1 and

d01 = 0. Then equation (8) reduces to the system of Engel curves

qi =
�
x i � � � � 0qg � e
 0ezi � � 0ezg

� 2
m +

�
x i � � � � 0qg � e
 0ezi � � 0ezg

�
� (A16)

+ r + A qg + eCezi + Dezg + vg + u i ;

This has a very similar structure to the generic multiple equation system of equations (A11),

and we proceed similarly.

De�ne evg =
�
� 0qg + � + � 0ezg

� 2
m �

�
� 0qg + � + � 0ezg

�
� + r + A qg + Dezg + vg. Then

equation (A16) can be rewritten more simply as

qi = ( x i � e
 0ezi )
2 m � 2 (x i � e
 0ezi )

�
� 0qg + � + � 0ezg

�
m +(x i � e
 0ezi ) � + eCezi + evg + u i ; (A17)

Here the �xed e�ect vg has been replaced by a new �xed e�ectevg. As in the generic �xed

e�ects model, we begin by taking the di�erenceqji � qji 0 for each goodj 2 f1; :::; J g and

each pair of individuals i and i 0 in group g. This pairwise di�erencing of equation (A17)

gives, for each goodj;

qji � qji 0 =
�

(x i � e
 0ezi )
2 � (x i 0 � e
 0ezi 0)2

�
mj + ec0

j (ezi � ezi 0)

+
�
� j � 2mj

�
� 0qg + � + � 0ezg

��
[(x i � e
 0ezi ) � (x i � e
 37767 2.269 Td (0)Tj /Tg9aw��m )/T1 /T1_3 11.955 Tf 4.22 0.166 Tde6j /Tg9aw263d (0)Tj /T1_0 11.955 Tf 3.183 -0.476 Td ())Tj /T1_6 7.97 Tf 4.552 6.209 7 9.1355 f 4.981 -9.6 Tf 4.732 7.061294 (�)Tj /T1_2 11.955 Tf 9/T18 -13.5Tj 8a1equals



betweenbqg;�ii 0 and qg.

De�ne group level instrumentsr g as in the generic model. In particular,r g can includeezg,

group averages ofx i and of zi , using data from individualsi that are sampled in other time

periods than the one currently being used for Engel curve identi�cation. De�ne a vector of

instruments r gii 0 that contains the elementsr g, x i ; ezi ; x i 0; ezi 0, and squares and cross products

of these elements. We then, analogous to the generic model, obtain unconditional moments

0 = Ef[(q ji � qji 0) �
�

(x i � e
 0ezi )
2 � (x i 0 � e
 0ezi 0)2

�
mj � ec0

j (ezi � ezi 0)

� (� j � 2mj (� 0bqg;�ii 0 + � + � 0ezg)) (( x i � e
 0ezi ) � (x i 0 � e
 0ezi 0))]r gii 0g: (A18)

Combining common terms, we have

0 = Ef[(q ji � qji 0) � (x2
i � x2

i 0)m j + 2 ( x iezi � x i 0ezi 0)0e
m j � e
 0(eziez0
i � ezi 0ez0

i 0)e
m j

�
�
ec0

j � (� j � 2mj � )e
 0
�

(ezi � ezi 0) � (� j � 2mj � ) (x i � x i 0)

+ 2mj (� 0bq



large enoughT, that is, T � 1 + J (J +1)
2(J �1) , we get more equations than unknowns, allowing

R and b





0. With similar arguments in the generic model, Assumption B4 su�ces to ensure that

E(" qg;�ii 0[(x i � x i 0); (ezi � ezi 0)0]jx i ; x i 0; zi ; zi 0; r g) = E(" qg;�ii 0jr g) � [(x i � x i 0); (z i � zi 0)0] = 0:

Then we have the moment condition

0 = Ef[q i � qi 0 + 2m (� 0bqg;�ii 0 + � 0ezg) [(x i � x i 0) � e
 0(ezi � ezi 0)] � (x2
i � x2

i 0)m (A22)

� e
 0(eziez0
i � ezi 0ez0

i 0) e
 m + 2me
 0(ezi x i � ezi 0x i 0) � � (x i � x i 0) + (� e
 0� eC)(ezi � ezi 0)]jx i ; x i 0; zi ; zi 0; r gg

for the Engel curves, where� = � �2m � , and so

E
��

qi � qi 0 + 2e�b 0 ln p t
d
p t

(p 0
tA bqgt;�ii 0 + p0

tDezg) [(x i � x i 0) � p0
t
eC(ezi � ezi 0)] � e�b 0 ln p t

d
p t

[(x2
i � x2

i 0) + p0
t
eC (eziez0

i � ezi 0ez0
i 0) eC0p t � 2p0

t
eC(z i x i � zi 0x i 0)] �

�
b
p t

� 2e�b 0 ln p t
d
p t

p1=20
t Rp 1=2

t

�

�(x i � x i 0) + [(
b
p t

� 2e�b 0 ln p t
d
p t

p1=20
t Rp 1=2

t ) eC0p t � eC](ezi � ezi 0)jx i ; x i 0; zi ; zi 0; r g

�
= 0:

(A23)

for the full demand system.

We de�ne the instrument vector r gii 0 to be linear and quadratic functions ofr g, (x i ; z0
i )

0;

and (xi 0; z0
i 0)0: Denote

L1jgii 0



wheree
 k is the kth element of e
 = eC0p, � k2 is the k2th element of � = D 0p, and ecjk is the

(j; k )th element of eC.

Assumption B5: E
�
Q0

g

�
E (Q g) is nonsingular, where

Qg = ( Q21g; :::;Q2Jg; Q311g; :::;Q3JKg ; Q41g; :::;Q4K 2g; Q511g; :::;Q5KK 2g;

Q6g; Q711g; :::;Q7KKg ; Q81g; :::;Q8Kg ; Q9g; Q101g; :::;Q10Kg ):

Under Assumption B5, we can identify

(�2m j �
0
; 2mj � 1e
 0; :::; 2mj � J e
 0; �2m j � 0; 2mj � 1e
 0; :::; 2mj � K 2 e
 0; mj ; mj e
 1e
 0; :::; mj e
 K e
 0;

�2m j e
 0; � j ; c0
j � � j e
 0)0 =

�
E

�
Q0

g

�
E (Q g)

� �1
E

�
Q0

g

�
E (Q 1jg )

for each j = 1; :::; J � 1. From this, �; �; e
 , eC; m, and � = � �2m � are identi�ed. To

identify the full demand system, letp t denote the vector of prices in a single price regimet.

Let

P = ( p1; :::; pT )0 and � = (� 0
1; :::; � 0

T )0

with the ( J � 1) � [J � 1 + J (J + 1)=2] matrix

� t =

0

B
B
B
B
@

1



matrix P = ( p1; :::; pT )0 and the (J � 1)T � [J � 1 + J (J + 1)=2] matrix � both have full

column rank.

Given Assumption B6,A and D are identi�ed by

A = ( P0P)�1 P0(� 1; :::; � T )0 and D = ( P0P) �1 P0(�978 c809Tj /T1l_2 -4.936d (1))Tj /T1_3 11.95- 22.762 0 Td (D)Tj J /3j /T1_52.4f (�)T1i9



The GMM estimator, using group level clustered standard errors, is then

�
bA 0

1; :::; bA 0
J ;bb1; :::;bbJ �1 ; bd1; :::;bdJ �1 ;bec

0

1; :::bec
0

J ; ; bD 0
1; ::: bD 0

J ; r11; :::rJJ ; r12; :::; rJ �1J

� 0

= arg min

 P T
t=1

P G
g=1

P
(i;i 0)2� gt

mgtii 0

P T
t=1

P G
g=1

P
(i;i 0)2� gt

1

! 0

b


 P T
t=1

P G
g=1

P
(i;i 0)2� gt

mgtii 0

P T
t=1

P G
g=1

P
(i;i 0)2� gt

1

!

;

where the expression ofmgtii 0 = ( m0
1gtii 0; :::;m0

J �1;gtii 0) is

m jgtit 0 = [( qji � qji 0) �
�

(x i � e
 0
tezi )

2 � (x i 0 � e
 0
tezi 0)2

�
mjt � m

()� e i � ezi
2 �emjt

��

mj �:::;
 0� � et



because

E
�
qgt[(x i � x i 0) � 
 0

gt(ezi � ezi 0)]( bx �
gt;�ii 0 � x �

gt) j x �
gt; x � x �0

gt; vgt; wgt�; "wgt�; x �
it ; x �

i 0t

�
= 0;

and

E
�
[(x �

i � x �
i 0)]( bx �

gT;�ii 0 � x �
gt)0 j wgt�; "wgt�; x �

it ; x �
i 0t

�
= 0;

E
�

[(x �
i � x �

i 0)]( dx � x �0
gt;�ii 0 � x � x �0

gt)0 j wgt�; "wgt�; x �
it ; x �

i 0t

�
= 0;

wherex � = ( x; z0)0: It follows that
�

dx � x �0
gt�; bx �

gt� bx � 0
gt�; bx �

gt�

�
is a valid instrument for bqgt;�ii 0:

The full set of proposed instruments is thereforer gii 0 = r g 
 (x �
i � x �

i 0; x �
i x �0

i � x �
i 0x �0

i 0),

where

r g =
�

dx � x �0
gt�; bx �

gt� bx � 0
gt�; bx �

gt�; x �
i + x �

i 0; x2
i + x2

i 0; x1=2
i + x1=2

i 0

�
;

for the Engel curve system, andr gtii 0 = r gt 
 (x �
i � x �

i 0; x �
i x �0

i � x �
i 0x �0

i 0), where

r gt = p0
t 


�
dx � x �0

gt�; bx �
gt� bx � 0

gt�; bx �
gt�; x �

i + x �
i 0; x2

i + x2
i 0; x1=2

i + x1=2
i 0

�
:

for the full demand system.

A.6 Identi�cation and Estimation of the Demand System with Ran-

dom E�ects

The Engel curve model with random e�ects is

qi = x2
i m + ( e
 0eziez0

i e
 ) m � 2me
 0ezi x i + m
�
� 0qg + � 0ezg + �

� 2

� 2m
�
� 0qg + � 0ezg + �

�
(x i � e
 0ezi )

+
�
x i � � � � 0qg � e
 0ezi � � 0ezg

�
� + r + A qg + eCezi + Dezg + vg + u i ,

Therefore,

"qi0 = qi 0 � qg = " x2 i 0m + 
 0" zzi 0
 m � 2m
 0" zxi 0�2m
�
� 0qg + � 0ezg + �

�
(" xi 0 � e
 0" zi 0)

+ �" xi 0 + (C � � e
 0)" zi 0 + vg � � + u i 0;

"qg;�ii 0 = bqg;�ii 0 � qg = " x2g;�ii 0m + 
 0" zzg;�ii 0
 m � 2m
 0" zxg;�ii 0�2m
�
� 0qg + � 0ezg + �

�

� (" xg;�ii 0 � 
 0" zg;�ii 0) + �" xg;�ii 0 + (C � � e
 0)" zg;�ii 0 + vg � � + bug;�ii 0:

22



By rewriting



Denote

L1jgi = qji , L2jj 0gi =
1

ng � 1

X

i 02g;i 06=i

bqjg; �ii 0qj 0i 0; L3gi = x2
i , L4kk0gi = ezki ezk0i ; L5k2k0

2gi = ezk2gezk0
2g;

L6kgi = ezki x i ; L7k2gi = ezk2gx i ; L8jgi = bqjg; �i x i , L9jkgi = bqjg; �i ezki , L10jk 2gi = bqjg;�i ezk2g,

L11kk2gi = ezki ezk2g, L12jgi = bqjg;�i , L13gi = x i , L14kgi = ezki , L15k2gi = ezk2g; L16gi = 1:

For ` 2 f1j; 2jj 0; 3;4kk0; 5k2k0
2; 6k;7k2; 8j; 9jk; 10jk2; 11kk2; 12j; 13;14k;15k2; 16 j j; j 0 =

1; :::; J; k; k0 = 1; :::; K ; k2; k0
2 = 1; :::; K 2g; de�ne group level vectors

H `g =
1

ng � 1

X

i2g

L `gi r gi :

Then for each goodj , the identi�cation is based on

E

0

@H 1jg � mj

JX

j =1

JX

j �r
k

=1

Xk 1 1H

(L)Tj /T1_Tk7.964 -18j : H

(L)Tj /T1_Tk7.964 -18j :Xj (L)Tj /T1_3 445 Tf 10.239 -1.793 Td (j)Tj /T1_4 5.978 Tf 3.884 793 618 -979=2597 Tfi1.9.37 1.976.588 2.511 Td (H)Tj /T1_2 7.96 Tf 30.202 -85 0 Td ((L)Tj /T1_T1.793 Td (j)Tj /T1_48.11/T Tf 3.884 793 618 -32.666 T9)-327(123_3 7.97 T1.793 Td (g)Tj /T1_5 11.955 Tf 7.471 1.793 Td (�)Tj /T1_1 11.955 Tf 11.1.793 Td 12)Tj /T1_5 .956 0 Td (m)Tj /T1_3(ba92 Tf 10.239 -1.7931213855 j 12.322 1J.793 Td 6)]TJ /T1_1 1
Xj

Xj
X

k

1 j1 Hj g � m X
k

�r
H

:Xj



for each j = 1; :::; J � 1. From this, e
; �, �; m, � = � �2m � , A j , ecj , D j ; and mj � 2 �

� j � + r j + vj 0 for j = 1; :::; J � 1 are all identi�ed. Then, A J =
�

� �
P J �1

j =1 A j pj

�
=pJ ,

ecJ = ( e
 �
P J �1

j =1 ecj pj )=pJ , and D J = ( � �
P J �1

j =1 D j pj )=pJ are identi�ed. Here without price

variation, we can identify A and D. This is di�erent from the �xed e�ects model because

the key term for identifying A is A qg , which is di�erenced out in �xed e�ects model, and

only eC can be identi�ed from the cross product ofqg and (x i ; ezi ). Furthermore, to identify

the structural parametersb, d; and R, we need the rank condition in Assumption B6(2).

With our data spanning multiple time regimest, we estimate the full demand system

model simultaneously over all values oft, instead of as Engel curves separately in eacht

as above. To do so, in the above moments we replace the Engel curve coe�cients� , � , e
 ,

�, � , r j , and m with their corresponding full demand system expressions, i.e.,� = A 0p,

� = p1=20Rp 1=2, etc, and addt subscripts wherever relevant. The resulting GMM estimator

based on these moments (and estimated using group level clustered standard errors), is then

( bA 0
1; :::; bA 0

J ;bb1; :::;bbJ �1 ; bd1; :::;bdJ �1 ;bec
0

1; :::bec
0

J ; ; bD 0
1; ::: bD 0

J ; bR11; ::: bRJJ ; bR12; :::; bRJ �1J ;

b�; b� v;11; :::; b� v;JJ ; b� v;12; :::; b� v;J �1;J ; )0

= arg min

 P T
t=1

P G
g=1

P
i2� gt

mgti
P T

t=1

P G
g=1

P
i2� gt

1

! 0

b


 P T
t=1

P G
g=1

P
i2� gt

mgti
P T

t=1

P G
g=1

P
i2� gt

1

!

;

where the expression ofmgti = ( m0
1gti ; :::;m0

J �1;gti ) is

m jgti = fq ji � mjt � 0
t bqgt;�ii 0� 0

tqi 0 � mjt (x i � e
 0
tezi )2 � mjt (� 0

tezgt + � t )2

+ [(2m jt (x i � e
 0
tezi � � 0

tezgt � � t ) + � jt )� 0
t � A 0

j ]bqgt;�ii 0 + 2mjt (� 0
tezg + � t )(x i � e
 0

tezi )

� � jt (x i � � t � e
 0
tezi � � 0

tezgt) � r jt � ec0
j ezi � D 0

j ezg � vjt 0grgti

with

mjt = e�b 0 ln p t
dj

pjt
; � t = A 0p t , e
 t = eC0p t ; � t = D 0p t ; � t = p1=20

t Rp 1=2
t ;

� jt =
bj

pjt
�2m jt p1=20

t Rp 1=2
t , � jt =

bj

pjt
; r jt = Rjj + 2

X
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Rjk

q
pkt =pjt ;

vjt 0 = � jt � e�b 0 ln p t
dj

pjt

JX

j 1=1

JX

j 2=1

JX

j =1

JX

j 0=1

A j 1 j pj 1 tA j 2 j 0pj 2 t � vt;jj 0:

Note that vjt 0 are constants for each value ofj and t, that must be estimated along with

the other parameters. In our dataT is large (since prices vary both by time and district).

To reduce the number of required parameters and thereby increase e�ciency, assume that
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� = E(v gt) and � v = V ar(v gt) do not vary by t. Then we can replacevjt 0 with

vjt 0 = � j �



surveyed samplen, not the true sampleN . We then get the decomposition:

y
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As before, this" i does not have zero conditional mean due to the quadratic term.

Since we no longer have groups, we cannot look at all pairs of observations within a

group. Instead, we can randomly spliti's observed friends into two subsetsni = n(1)
i + n(2)

i

and construct the sample mean from each subset
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We can then show that,

E (u i + e" i j x i ; x j ) = 0, (A28)

wherex j are from those ofi's observed friends. With these moments, we can now construct

instruments as before for GMM estimation.

Appendix B: Preliminary Data Analyses

B.1 Generic Model Estimates

In other, non-demand settings, the generic peer e�ects model of Section3 may be more

appropriate than the structural demand model. We implemented this model in Section4.2,

but in this section describe the results in more detail.

As in the presentation in (12), yi is expenditures on food,yg is the true group-mean

expenditure on food,byg is the observed sample average, andx i is total expenditures.

We provide estimates using random-e�ects unconditional moments (21) and �xed-e�ects

unconditional moments (18). De�nexg;�t to be the group-average expenditure in other time

periods. Fixed-e�ects instrumentsr gii 0 are: xg;�t ; (x i � x ii 0); (x i � x ii 0)xg;�t ; (x2
i � x2

ii 0); (zi �

zk); (zi �z k)xg;�t ; zg; zg(x i �x i 0); 1. Random-e�ects instrumentsr gi are: xg;�t ; x i ; x i xg;�t ; x2
i ; zi ; 1.

These instruments are constructed to mirror the sources of identi�cation in the FE and RE

cases, respectively. Resulting GMM estimates of the parameters are given inTable A3.

In the RE model, higher levels of peer food expenditure work in the same direction as own
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expenditure; in e�ect making the household behave (in a demand sense) as if it was richer

when peer expenditures rise. Since this is not sustainable in equilibrium, it is reassuring that

in the FE speci�cation, higher peer expenditure makes households reduce their demand for

food.

This di�erence between the models is a natural consequence of the group-level unobserv-

able taste for an expenditure categoryvg being correlated with expenditure in that category.

Unsurprisingly, the Hausman tests decisively reject the RE speci�cation.

However, the peer e�ects in the FE speci�cation are very large. Variation in peer expen-

diture has over twice the e�ect of own expenditure on demand behavior (see the estimates

of �a=b), but we cannot reject equivalence of the two e�ects given the imprecision of the

peer e�ect estimates. This is a potential consequence of excluding group-average non-food

spending from the right hand side. We take this as a reason to focus on the structural esti-

mates, which restrict behavior (including price responses) in a way consistent with economic

theory.

In both models, the estimated values ofb is positive, andd is negative. As a result, food

budget shares are declining with expenditure, consistent with Engel's Law..

B.2 Subjective well-being and peer consumption

Our generic model estimates above are consistent with a theory in which increased peer

consumption decreases the utility one gets from consuming a given level of food, as suggested

by our theoretical model of needs. However, the generic model only reveals the e�ect of peer

consumption on one's own consumption, not on one's utility. For example, it is possible that

the success of my peers makes me happy rather than envious. Or peer consumption could

increase the utility I obtain from my own consumption, e.g., my own telephone becomes

more useful when my friends also have telephones. In short, our needs model implies that

peer expenditures induce negative rather than positive consumption externalities.

To directly check the sign of these peer spillover e�ects on utility, we would like to

estimate the correlation between utility and peer expenditures, conditioning on one's own

expenditure level. While we cannot directly observe utility, here we make use of a proxy,

which is a reported ordinal measure of life satisfaction.

Table A1 summarizes the 4th (2001), 5th (2006), and 6th (2014) waves of the World Values

Survey. In each year the surveyor asks the question, \All things considered, how satis�ed

are you with your life as a whole these days?" Answers are on a 5-point ordinal scale in the

5th wave, so we collapse all waves to a 5-point scale.

Neither wave of the survey reports actual income or consumption expenditures. What

30



this survey does report is position on a ten-point income distribution. The exact cutpoints

are undocumented, so we collapse the scale to �ve points for interpretability and use dummies

for the income groupings directly in our analysis.

For this analysis we de�ne groups by religion (Hindu vs non-Hindu) and state of residence

(20 states and state groupings). These are much larger, more coarsely de�ned groups than

we use for all of our other analyses. This is for two reasons: �rst, we do not observe caste or

geographic indicators smaller than states; and second, larger groups are needed here because

the WVS sample size is much smaller than the NSS and we have no asymptotic theory to

deal with small group sizes in this part of the analysis.

Table A2 presents estimates of well-being as a function of both own total expenditures

and group total expenditures, speci�ed as

Ui =
5X

s=2

� g1[I i = s] + � bxgt + X igt � + 
 g + � t + " igt , (A29)

where Ui is the z-normalized well-being indicator, 1[gi = s] is an indicator for individual i

belonging to income groups, bxgt is imputed group expenditures,X igt is vector of individ-

ual level controls, 
 g is a group level �xed e�ect (groups are de�ned within states, so this

e�ectively includes a state �xed e�ect as well), and � t is a year �xed e�ect. Identi�cation

of � comes from group-level changes in expenditure between rounds, and corresponds to the

change in self-reported utility as group income is rising versus falling, holding own income

constant. We also repeat this analysis using an ordered logit speci�cation.

Results in the second column of Table A2 imply that satisfaction is increasing over the

entire range of individual expenditures, but that a 1000 rupee increase in peer expenditure

bxgt decreasessatisfaction by 0.15 standard deviations. Other speci�cations inTable A2 give

similar results. The signs of these e�ects are consistent with our model of peer expenditures

as negative consumption externalities. The magnitudes are also relative large (average peer

expenditure is 5,554, with a standard deviation of 2,580), consistent with our structural

results.

Since well-being is reported on an ordinal scale, to check the robustness of these results,

we estimate the same regression as an ordered logit (see columns 4 and 5 ofTable A2). The

results are qualitatively the same, suggesting that our results are not being determined by

the normalizations implicit in z-scoring the satisfaction responses. We conclude that welfare

is indeed increasing in household expenditure and decreasing in peer expenditure.

Finally, we include an interaction term (the product of peer expenditures and the indi-

vidual being in the top two income groups) in the regression in columns 3 and 6, and �nd its

coe�cient to be insigni�cantly di�erent from zero, which is consistent with our linear index
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modeling assumption.
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Table A1: Subjective well-being summary statistics

Mean SD Min Max

Income group 2 (=1) .4 .49 0 1
Income group 3 (=1) .21 .4 0 1
Income group 4 (=1) .087 .28 0 1
Income group 5 (=1) .041 .2 0 1
Group expenditure (1000 rupees) 5.6 2.6 2.8 18
Age .34 .12 .15 .77
Sex 1.4 .49 1 2
Household size .32 .19 0 .9
Married (=1) .84 .36 0 1
Primary education (=1) .095 .29 0 1
Secondary education (=1) .13 .34 0 1

Observations 5,084

Life satisfaction variable from World Values Survey. Participants

were asked \All things considered, how satis�ed are you with your

life as a whole these days?"and asked to point to a position on a

ladder. Coded as 1-5 in 2001 and 2006, and 1-10 in 2014. We col-

lapsed to a 1-5 scale in 2014. Group income measured in thousands

of Rs/month.

33



Table A2: Satisfaction on household and peer income

OLS (SDs) Ordered logit

(1) (2) (3) (4) (5) (6)

Income group 2 (=1) 0.14�� 0.12�� 0.12�� 0.33��� 0.30�� 0.30��

(0.06) (0.06) (0.06) (0.11) (0.12) (0.12)

Income group 3 (=1) 0.36��� 0.33��� 0.33��� 0.80��� 0.74��� 0.75���

(0.07) (0.08) (0.08) (0.15) (0.15) (0.15)

Income group 4 (=1) 0.40��� 0.39��� 0.21 0.95��� 0.93��� 0.47
(0.10) (0.10) (0.19) (0.23) (0.23) (0.42)

Income group 5 (=1) 0.52��� 0.51��� 0.33� 1.19��� 1.17��� 0.71
(0.17) (0.17) (0.19) (0.42) (0.40) (0.45)

Group expenditure (1000 rupees) -0.15�� -0.15�� -0.16�� -0.35�� -0.34� -0.37��

(0.07) (0.07) (0.07) (0.17) (0.18) (0.18)

Group expend X top 2 quintiles 0.03 0.07
(0.03) (0.06)

Controls No Yes Yes No Yes Yes

Observations 5,084 5,084 5,084 5,084 5,084 5,084

Dependent variable as noted in column header, in SD. Subjective well being data from World

Values Survey, imputated group income from NSS. Peer groups de�ned as intersection of

state and religion (Hindu and non-Hindu). Controls include household size, age, sex, marital

status and education. All columns include year �xed e�ects. Standard errors in parentheses

and clustered at the group level. � p < 0:10, �� p < 0:05, ��� p < 0:01.
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Table A3: Food spending as a function of group spending, generic model estimates

RE FE

(1) (2) (3) (4)

a (peer mean expenditure) 0.142��� 0.131��� -1.024�� -1.077��

(0.047) (0.046) (0.428) (0.442)
b (own expenditure 0.413��� 0.415��� 0.462��� 0.456���

(0.011) (0.011) (0.019) (0.018)
d (curvature) -0.181��� -0.182��� -0.099��� -0.067���

(0.010) (0.010) (0.017) (0.012)

�a=b -0.344 -0.315 2.214 2.361
(0.118) (0.115) (0.928) (0.975)


