Abstract

1 Introduction

2 Literature review

leverage e¤ect

between inventories and prices

leverage crude oil spot market

3.1 Descriptive statistics

Descriptive Statistics and P-values for the daily futures returns and realised variance for daily futures returns and realized variance 2001-2016

0:00	0:00	1:44	1:35	0:12	0:08	21:14
0:00	0:01	2:38	2:42	0:32	0:36	8:71
0:00	0:00	1:64	1:73	0:23	0:0	7:33
0:00	0:00	0:00	0:32	0:01	12:75	258:67
90:0	0:00	0:00	5:86	0:19	19:15	495:16
0:03	0:00	0:00	2:68	0:08	20:95	648:12

Test Statistics and P-values for the daily futures returns and realised variance for daily futures returns and realised variance 2001-2016

4 Estimation method

Realized Variance

Integrated Variance

t $[t \quad k; t]$

 $r(t;k) = \ln F$

$$dp = d \ln(F)$$

$$= \frac{\mathbf{P}_{V}}{V} dW_{1} + xdPoisson(t)$$

$$dV = (V) dt + \frac{\mathbf{P}_{V}}{V} dW_{2}$$

$$E(dW_{1} dW_{2}) = dt$$

$$x \quad N \quad 0$$

4.4 Stochastic Volatility model (SV)

= 0; = 0 = 0)

e1

e2

J

GMM estimates for the SV, SVJ, SVL, SVJL models for the S&P500 futures: 09/2001-06/2016

	1 <i>:</i> 507***	0 : 0869***	0 <i>:</i> 0424***	0 <i>:</i> 227***
	(5 <i>:</i> 87)	(4 <i>:</i> 58)	(2 <i>:</i> 92)	(29 <i>:</i> 99)
	0 : 00398***	0:00994***	0:00649***	0:00376***
	(8 <i>:</i> 41)	(12 <i>:</i> 56)	(5 <i>:</i> 55)	(15 <i>:</i> 69)
	0 <i>:</i> 283***	0:338***	0 <i>:</i> 249***	0 <i>:</i> 12015172***
	(6 <i>:</i> 55)	(19 <i>:</i> 62)	(17 <i>:</i> 96)	(54 <i>:</i> 75)
		0 <i>:</i> 979		0:156923006***
		(0:38)		(10:09)
		0 <i>:</i> 0159		0:038120618***
		(0 <i>:</i> 77)		(30:60)
			0 <i>:</i> 379***	0:490***
			(11 <i>:</i> 29)	(29 <i>:</i> 11)
N	3708			

^{*}p < 0.10;** p < 0.05;*** p < 0.01

GMM estimates for the SV, SVJ, SVL, SVJL models for Natural Gas futures: 09/2001-06/2016

	0 <i>:</i> 923**	0 <i>:</i> 772***	0 <i>:</i> 760***	0 <i>:</i> 0556*
	(2 <i>:</i> 19)	(4 <i>:</i> 11)	(3 <i>:</i> 45)	(1 <i>:</i> 75)
	0:0483***	0:0568***	0:0460***	0 <i>:</i> 0545***
	(4 <i>:</i> 36)	(6 <i>:</i> 15)	(5 <i>:</i> 60)	(4 <i>:</i> 97)
	1:139**	1:041***	0:925***	0:24293***
	(2 <i>:</i> 33)	(6 <i>:</i> 23)	(3 <i>:</i> 49)	(3:82)
		0.0101***		0:04345***
		(4 <i>:</i> 03)		(18 <i>:</i> 52)
		0:932***		0 <i>:</i> 97814
		(32 <i>:</i> 63)		(0 <i>:</i> 53)
			0 <i>:</i> 201***	0:0495**
			(4 <i>:</i> 57)	(2 <i>:</i> 14)
N	3708		· · ·	•

^{*}p < 0.10;***p < 0.05;****p < 0.01

GMM estimates for the SV, SVJ, SVL models for WTI futures: 09/2001-06/2016

0 <i>:</i> 0596*	0:0963*
(1 <i>:</i> 77)	(1 <i>:</i> 71)
0:0224***	0:0242***
(3 <i>:</i> 45)	(6 <i>:</i> 43)
0 <i>:</i> 131***	0 <i>:</i> 162**
(2 <i>:</i> 60)	(2 <i>:</i> 50)
0:0190**	
(2 <i>:</i> 44)	
0 <i>:</i> 439***	
(39 <i>:</i> 24)	
	0 <i>:</i> 276***
	(3:64)
	(1:77) 0:0224*** (3:45) 0:131*** (2:60) 0:0190** (2:44) 0:439***

^{*}p < 0.10;** p < 0.05;*** p < 0.01

5 Robustness check for subsamples

GMM estimates for S&P500, Natural Gas and WTI futures before and after September 15, 2008 (Lehman Brothers bankruptcy)

	0 <i>:</i> 137***	0 <i>:</i> 0871***	0 <i>:</i> 276***
	(13:27)	(5 <i>:</i> 55)	(3 <i>:</i> 87)
	0 : 00331***	0 : 0836***	0 : 0328***
	(16 <i>:</i> 47)	(11 <i>:</i> 69)	(8:33)
	0 <i>:</i> 0577***	0 <i>:</i> 5455***	0:343***
	(57 <i>:</i> 58)	(12 <i>:</i> 32)	(6 <i>:</i> 36)
	0 <i>:</i> 1325***	0:0966***	
	(7 <i>:</i> 37)	(26 <i>:</i> 15)	
	0:0364***	0 <i>:</i> 4921***	
	(24:70)	(48:64)	
	0:440***	0 <i>:</i> 0137**	0 <i>:</i> 262***
	(18:40)	(2:20)	(6:66)
N = 1990			
	0 <i>:</i> 188***	0:0434	
	(13 <i>:</i> 22)	(1 <i>:4</i> 616)	

6 Out-of-sample performance

0:08014	0 <i>:</i> 19278	0 <i>:</i> 07757	0 <i>:</i> 1104
0 <i>:</i> 26398	0 <i>:</i> 28523	0:26231	
0:34547	0 <i>:</i> 3652	0:33651	0 <i>:</i> 378
0 <i>:</i> 06134	0 <i>:</i> 12978	0:05884	0:07281
0 <i>:</i> 20573	0 <i>:</i> 22121	0:20444	
0 <i>:</i> 26411	0 <i>:</i> 28076	0:25676	0 <i>:</i> 27043

0:00447	0:013848	0:004074	0:003308
0 <i>:</i> 021026	0:019163	0 <i>:</i> 020501	
0:066412	0 <i>:</i> 072497	0 <i>:</i> 057729	0:03341
0 <i>:</i> 003215	0 <i>:</i> 005822	0 <i>:</i> 002886	0 <i>:</i> 002195
0 <i>:</i> 015708	0:014377	0:015325	
0 <i>:</i> 041425	0:046088	0 <i>:</i> 037161	0:023585
	0:021026 0:066412 0:003215 0:015708	0.021026 0.019163 0.066412 0.072497 0.003215 0.005822 0.015708 0.014377	0.021026 0.019163 0.020501 0.066412 0.072497 0.057729 0.003215 0.005822 0.002886 0.015708 0.014377 0.015325

6.2 Diebold-Mariano test

4.	1:0 08:)3 5 <i>:</i> 2	0 0:39	6 : 07	0 <i>:</i> 81	17 <i>:</i> 64	0:96
0	<i>:</i> 66 0 <i>:</i> 4	42 0 <i>:</i> 9	7 0 <i>:</i> 97	1 <i>:</i> 31	1:00	12 <i>:</i> 81	1 <i>:</i> 00
0	:09 0:	76 21 <i>:</i> !	00:00	31 <i>:</i> 89	00:00	5 <i>:</i> 59	1 <i>:</i> 00
0	:05 0:8	33 27 <i>:</i>	14 0:00	36 <i>:</i> 50	00:00	0 <i>:</i> 67	1 <i>:</i> 00
0	:38 0:	54 6 <i>:</i> 0	7 0:30	7 <i>:</i> 38	0 <i>:</i> 69	24 <i>:</i> 71	0 <i>:</i> 74
0	:00 00:	96 1 <i>:</i> 6	5 0 <i>:</i> 90	2 <i>:</i> 21	0 <i>:</i> 99	9 <i>:</i> 59	1:00
0	<i>:</i> 17 0 <i>:</i> 6	58 5 <i>:</i> 1	1 0:40	7 <i>:</i> 67	0 <i>:</i> 66	23 <i>:</i> 01	0 <i>:</i> 81
0	<i>:</i> 27 0 <i>:</i> 6	61 4 <i>:</i> 3	0 0:51	5 <i>:</i> 96	0 <i>:</i> 82	22 <i>:</i> 44	0 <i>:</i> 84
0	:01 0:	93 0:0	4 1:00	0 <i>:</i> 10	1 <i>:</i> 00	20 <i>:</i> 19	0 <i>:</i> 91
0	:01 0 <i>:</i> 9	93 0:0	4 1:00	0 <i>:</i> 10	1 <i>:</i> 00	18 <i>:</i> 55	0 <i>:</i> 95
0	:01 0 <i>:</i> 9	94 0:0	4 1:00	0 <i>:</i> 10	1 <i>:</i> 00	22 <i>:</i> 97	0 <i>:</i> 82
0	:01 0 <i>:</i> 9	93 0:0	4 1:00	0 <i>:</i> 10	1 <i>:</i> 00	19 <i>:</i> 40	0 <i>:</i> 93
0	:05 0:	33 0:0	6 1:00	0 <i>:</i> 25	1 <i>:</i> 00	19 <i>:</i> 37	0 <i>:</i> 93
0	:01 0 <i>:</i> 9	92 0:0	5 1:00	0 <i>:</i> 11	1 <i>:</i> 00	13 <i>:</i> 84	0 <i>:</i> 99
6	:0 86:)1 7 <i>:</i> 1	5 0 <i>:</i> 21	11 <i>:</i> 43	0 <i>:</i> 32	22 <i>:</i> 10	0 <i>:</i> 85
4	:05 0:0)4 4 <i>:</i> 3	7 0 <i>:</i> 50	4 <i>:</i> 29	0 <i>:</i> 93	4 <i>:</i> 76	1:00
0	:00 :1:	00 1 <i>:</i> 9	1 0:86	4 <i>:</i> 71	0 <i>:</i> 91	17 <i>:</i> 86	0 <i>:</i> 96
0	<i>:</i> 15 0 <i>:</i> 6	69 0 <i>:</i> 7	6 0 <i>:</i> 98	1 <i>:</i> 52	1 <i>:</i> 00	15 <i>:</i> 42	0 <i>:</i> 99
0	:00 00:	98 2 <i>:</i> 0	5 0 <i>:</i> 84	4 <i>:</i> 67	0 <i>:</i> 91	17 <i>:</i> 12	0 <i>:</i> 97
0	:10 0:	75 0 <i>:</i> 6	5 0 <i>:</i> 99	1 <i>:</i> 30	1:00	10 <i>:</i> 38	1:00
0	:00 1:	00 2:0	6 0 <i>:</i> 84	4 <i>:</i> 75	0 <i>:</i> 91	17 <i>:</i> 22	0 <i>:</i> 97
0	:11 0:	74 0 <i>:</i> 7	5 0 <i>:</i> 98	1 <i>:</i> 60	1 <i>:</i> 00	10 <i>:</i> 23	1 <i>:</i> 00

_

0:094	0 <i>:</i> 231	3 <i>:</i> 253	0:001	65 <i>:</i> 850	0:006
0:303	0.000	7 <i>:</i> 853	000:0	37 <i>:</i> 832	0 <i>:</i> 568
0 <i>:</i> 296	0:000	8 <i>:</i> 172	0:000	40 <i>:</i> 898	0 <i>:</i> 431
0 <i>:</i> 452	0:000	9 <i>:</i> 018	0:000	34 <i>:</i> 394	0 <i>:</i> 720
860:0	0 <i>:</i> 626	0 <i>:</i> 928	0 <i>:</i> 177	85 <i>:</i> 452	0.000
0 <i>:</i> 259	0:000	7 <i>:</i> 420	0:000	43 <i>:</i> 723	0 <i>:</i> 316
0 <i>:</i> 072	0 <i>:</i> 554	0 <i>:</i> 799	0 <i>:</i> 212	87 <i>:</i> 346	0.000
0 <i>:</i> 249	0.000	7 <i>:</i> 090	0.000	39 <i>:</i> 267	0 <i>:</i> 503
0 <i>:</i> 311	0.000	8 <i>:</i> 799	0.000	6 <i>:</i> 095	1:000
0 <i>:</i> 483	0.000	9 <i>:</i> 252	0.000	0 <i>:</i> 421	1:000
0 <i>:</i> 314	0.000	8 <i>:</i> 809	0.000	5 <i>:</i> 425	1:000
0 <i>:</i> 494	0.000	9 <i>:</i> 254	0.000	0 <i>:</i> 397	1:000
0 <i>:</i> 151	0:007	7 <i>:</i> 048	0.000	20 <i>:</i> 472	0 <i>:</i> 996
0 <i>:</i> 431	0.000	9 <i>:</i> 126	0.000	1 <i>:</i> 917	1:000
0 <i>:</i> 052	0:888	2 <i>:</i> 377	0:009	34 <i>:</i> 724	0 <i>:</i> 706
0:303	0.000	8 <i>:</i> 145	0.000	21 <i>:</i> 069	0 <i>:</i> 994
0:046	0 <i>:</i> 958	1 <i>:</i> 521	0:064	42 <i>:</i> 030	0 <i>:</i> 383
0 <i>:</i> 276	0.000	7 <i>:</i> 644	0.000	34 <i>:</i> 788	0 <i>:</i> 704
0276	0				

0	0	0	0	0	0
39	31	70	196	223	166
311	319	280	154	127	184
350	350	350	350	350	350

0	0	0	0	0	0
336	45	60	165	69	304
14	305	290	185	281	46
350	350	350	350	350	350

0	0	0	0
71	8	258	199
279	342	92	151
350	350	350	350

7 Forecasting VaR and CVaR

b

Stage 1 Backtesting the VaR and CVaR models

Failure Rate FR violation rate

= 5% = 1%

FRVaR

FRV aR CVaR

$$FRVaR = \frac{1}{T} \mathbf{X}_{=1} I (y < VaR)$$

$$FRVaR = \frac{1}{T} \times I (y > VaR)$$

VaR VaR VaRs

I()

Downside:
$$I = \begin{pmatrix} 1 & if & y < VaR \\ 0 & if & y & VaR \end{pmatrix}$$

$$Upside: I = \begin{pmatrix} 1 & if & y > VaR \\ 0 & if & y & VaR \end{pmatrix}$$

LR

 $H_0 : FR =$

LR

LR

LR LR

b

Out of sample VaR backtesting results using Simulated Volatilities at dimerent risk levels

				VaR								~	
			LR				LR			p values	les		
						LR			LR			LR	
2%	VaR	4:06%	7:32%	13:0%	69:0	0:24	*	0:62	0:27	*0	0:51	0:23	0:93
	VaR	7:32%	7:32%	14:63%	0:03*	0:24	*0	0:27	0:27	*0	9:0	0:23	0:02*
1%	VaR	0:81%	0:81%	%05:9	96:0	96:0	*0	0:83	0:83	*0	6:0	6:0	0:52
	VaR	3:25%	4:06%	%05:9	*0	0:03	*0	0:02	0:01	*0	90:0	0:51	0:45
2%	VaR	13:82%	8:13%	8:13%	*0	0:14	0:14	0:01*	0:18	0:83	*0	0:13	0:30
	VaR	18:67%	%91:6	11:382%	*0	0.03^{*}	0:01*	0:61	0:10	0:73	*0	0:02*	0:02*
1%	VaR	8:94%	0:81%	3:252%	*0	0:83	0:02	*10:0	6:0	09:0	*0	96:0	0:12
	VaR	13:01%	%69:9	4:878%	*0	*0	*0	0:13	0:35	0:27	*0	*0	*0
2%	VaR	2:44%	7:32%	8:94%	0:32	0:24	0:17	0:15	0:27	0:07	0:7	0:23	0:66
	V aR	4:88%	8:13%	11:38%	0:02*	0:13	0:01*	0:62	0:14	*0	0:21	0:18	0:63
1%	VaR	0:81%	0:81%	2:69%	96:0	96:0	*0	0:83	0:83	*0	6:0	6:0	0:39
	VaR	4:06%	4:06%	4:06%	*0	0:03	0:03	0:01	0:01	0:01	0:13	0:51	0:51
70%	VaD	2.44%		7.88%	0.33		7.0	٠ ٦		0.0	0.6073		0.43
2		0.4.7		000	70.0		;	2		?	0.00		
	VaR	8:13%		%05:9	0:02*		0:40	0:14		0:4636	0:75		0:29
1%	VaR	0:81%		1:63%	96:0		0:77	0:83		0:5223	6:0		0:8
	VaR	2:44%		1:63%	0:01*		0:77	0:17		0:5223	0:75		8:0

Out of sample CVaR backtesting results using Simulated Volatilities at dixerent nominal risk ${\bf CVaR}$

levels	٩	_				CVaR	, ,		; 				
			LR		ď	values		L	~		മ	values	
٩						LR			LR			LR	
1:96%	CV aR	1:6%	0:8%	11:4%	0:91	0:57	* *	0:78	0:3	* *	0:8	0:9	0:57
0:38%		3.2 % 0:8% 2:4%	0:8% 2:4%	5:7% 4:9%	0:78 0:04	0:78 0:042	* *	0:5	0:5	* *	0:9	0:9	0:39 0:47
1:96%	CV aR	0:11	0:02	0:04	* *0	0:78	0:14	0:03	0:80	0:51	* *	0:92	0:26 0*
0:38%		0:07	0:01	0:02	* * *	0:50	0:01 0*	0:14	0:90	0:70	* * *	0:00	0:04
1:96%	CV aR	0:8%	0:8%	6:5%	9:0 0*	0:57	* *	0:3	0:3	* *	0:9	0:9	0:5
0:38%		%9:1	0:8%	3:2% 4:1%	NA 0:23	0:78	* * *	0:33	0:5	* * *	Y 8:0	0:9	0:1 0:5
1:96%	CVaR	1:6%									928	:018\$\frac{1}{2}	0: V aR 3:

S

"non-superiority" **S**

"non-superiority" \$

"non-superiority"

\$ "non-superiority"

*

SVL vs SVJL

SVL vs SVJ

Out of sample RLF and FLF loss function approach applied to the models surviving the VaR Backtesting stage.

			0:01	0:01
	1%		0	0
			0:05	0:01
	2%		0:01	0:01
			0:02	0:11
	1%		0	0
			0:03	0:07
	2%		0	0

Out of sample RLF and FLF loss function approach applied to the models surviving the CVaR Backtesting stage

References

Appendix I: Realized Variance and Moment conditions

Realized Variance

Integrated Vari-

ance

8.1 No jumps

$$t$$
 z $[t \quad k; t]$ z $r(t; k) = \ln F \quad \ln F_{-} = () d + () dW$

$$QV(t;k) = IV(t;k) = {}^{2}()d$$

Realized Variance

$$RV(t;k;n) = \frac{\mathbf{X}}{\mathbf{n}} \mathbf{r} \cdot \mathbf{t} \cdot \mathbf{k} + \frac{\mathbf{j}}{\mathbf{n}} \cdot \frac{1}{\mathbf{n}}^{2}$$

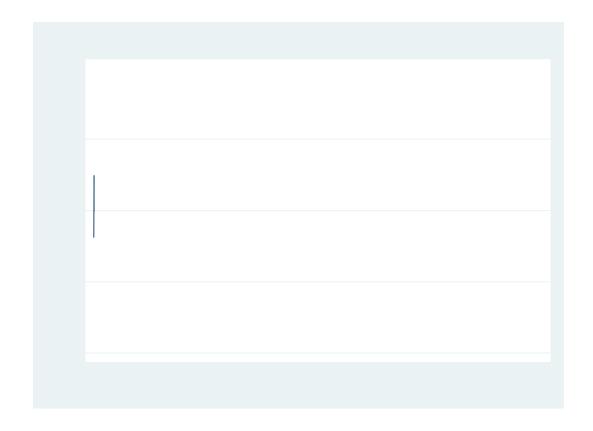
$$RV(t;k;n) \rightarrow IV(t;k)$$

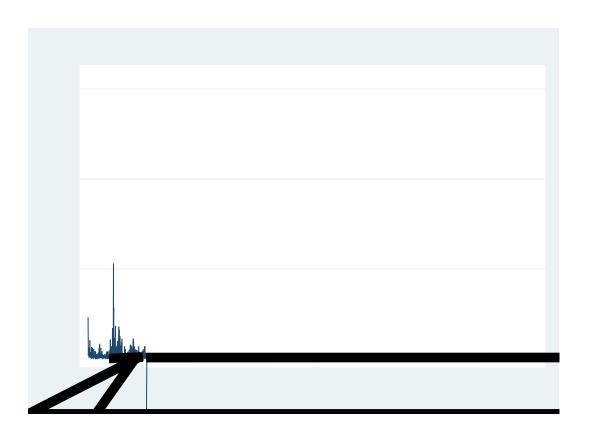
n ! 1

t [t k; t]

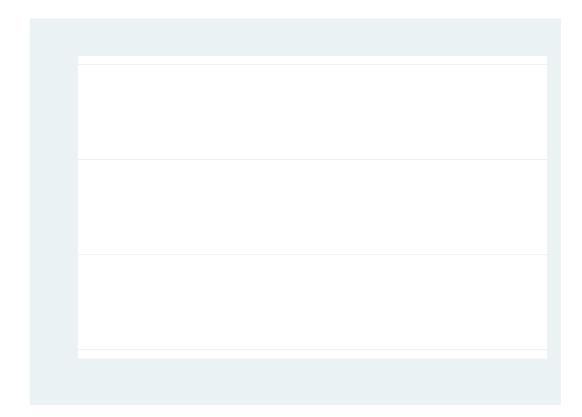
$$r(t;k) = \ln F \quad \ln F_{-}$$
 $= \quad () d + \quad () dW + \quad x() dN()$

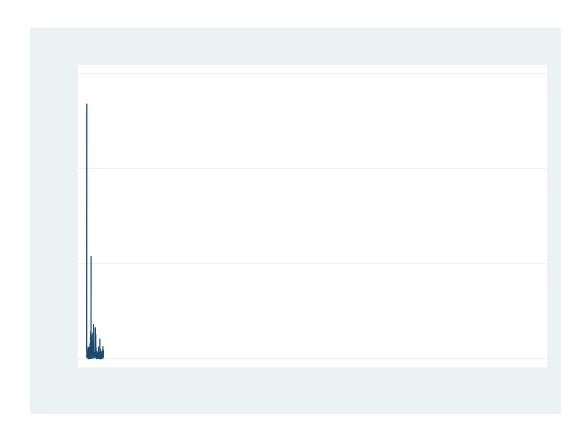
$$e_1 = E[BP_{+1}jG] + {}^2dt RV_{+1}$$
 $E[RV_{+1}jG] = E[BP_{+1}jG] + {}^2dt$
(A:3) Appendix A.1


Residual 2


$$(t+1;t+2)$$

$$e_2 = E[RV_{+1}]$$


$$E_{+1}^{2}$$
 G


Appendix II: Figures

Appendix III: t and J tests on the moment conditions

GMIM estimates for SV model for the S&P500 futures: 09/2001-06/2016

E[V ₊₁₊₂ jG] V ₊₁₊₂	0:0052	0:00271	0:00271 0:997841
$\mathbf{E} \left[\mathbf{V}_{+1} +_2 \mathbf{V}_{-16}{15} \mathbf{j} \mathbf{G} \right] \mathbf{V}_{+1} +_2 \mathbf{V}_{-16}{15}$	0:0052	0:00844	0:993267
$E[V_{+1} +_2 V_{-17}{16}]G]V_{+1} +_2 V_{-17}{16}$	0:0052	0:05157	0:958872
$\mathbf{E} \ \mathbf{V}_{+1}^2 +_2 \mathbf{G} \ \mathbf{V}_{+1}^2 +_2$	0:00851	0:00735	0:994135
E $V_{+1}^2 + 2V_{-10}^2 + 9$ G $V_{+1}^2 + 2V_{-10}^2 + 9$	0:00851	0:01141	6066:0
$E V_{+1}^2 +_2 V^-$			

GMIM estimates for SVJ model for the S&P500 futures: 09/2001-06/2016

: [V +1 +2 j G] V +1 +2	0:000068	0:999994
$[V_{+1} +_2 V_{-16}{15} j G]$ $V_{+1} +_2 V_{-16}{15}$	0:000068	0:999995
$E[V_{+1} +_2 V_{-17}{16}jG] V_{+1} +_2 V_{-17}{16}$	0:000068	0:6666:0
$V_{+1}^2 + V_{+1}^2 + V_{+1}^2 + V_{+1}^2$	0:000865	0:999991
$V_{+1}^2 + V_{-10}^2 - 9 $ G $V_{+1}^2 + 2V_{-10}^2 - 9$	0:000865	0:6666:0
	0:000865	0:999938
	0:002765	0:999498
$\mathbf{E} \cdot \mathbf{V}_{+1} \mathbf{B} \mathbf{P}_{-16}^2 = \mathbf{F} \cdot \mathbf{G} \cdot \mathbf{V}_{+1} \mathbf{B} \mathbf{P}_{-16}^2 = \mathbf{F}$	0:002765	0:999712
$\mathbf{E} \cdot \mathbf{V}_{+1} \mathbf{B} \mathbf{P}_{-2}^2 = \mathbf{G} \cdot \mathbf{V}_{+1} \mathbf{B} \mathbf{P}_{-2}^2 = \mathbf{G}$	0:002765	0:993492
	0:000559	0:999998
$V_{+1}V_{-10}^2 + V_{-10}^2 $	0:000559	986666:0
: $V_{+1}BP_{-18}^2$ = $I_{18} I_{17} G$ $I_{+1}BP_{-18}^2$	0:000559	0:999803
7	$\frac{2}{7} = 6.96664$	0:4324

_

GMIM estimates for SVL model for the S&P500 futures: 09/2001-06/2016

E[V +1 +2 i G] V +1 +2	0:0001	0	
	0:0001	0	_
E [$V_{+1} +_2 V_{-17}{16}$ J] $V_{+1} +_2 V_{-17}{16}$	0:0001	0	_
$+2V_{-20}$	0:0001	0:000025	0:99998
$E V_{+1}^2 + 5 G V_{+1}^2 + 2$	0:000232	0	_
	0:000232	0	_
	0:000232	0	_
E $V_{+1}^2 + \frac{1}{2}V_{-22}^2 - \frac{1}{2}$ G $V_{+1}^2 + \frac{1}{2}V_{-22}^2 - \frac{1}{2}$	0:000232	0:000025	0:99998
$E[p_{+1}V_{+1+2}jG]p_{+1}V_{+1+2}$	0:00023	0	_
E p $+1$ V $+1$ $+2$ p -15 -14 V $\frac{2}{-15}$ -14 G	0:00023	0	—
E p +1V +1 +2P -15 -14V -15 -14 E p +1V +1 +2P -12 -11V $^2_{-12}$ -11 G	0:00023	0	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0:00023	2:9 E 05	05 0:999977
p + 1 + 1 + 2 p - 18 - 17 = 18 - 17			
ſ	8	11:177	0:1919

٩

GMM estimates for SVJL model for the S&P500 futures: 09/2001-06/2016

E[V ₊₁₊₂ jG] V ₊₁₊₂	2:2 E 05		1
E $V_{+1} + 2V_{-20}^2 - 19$ G $V_{+1} + 2V_{-20}^2 - 19$	2:2 E 05		1
E $V_{+1} + 2V_{-18}^3 = -7$ G $V_{+1} + 2V_{-18}^3 = -17$	2:2 E 05	2 E 06	966666:0 9
E $V_{+1}^2 + 2$ G $V_{+1}^2 + 2$			1
E $V_{+1}^2 + {}_{2}V_{-10}^2 - 9$ G $V_{+1}^2 + {}_{2}V_{-10}^2 - 9$			1
E $V_{+1}^2 + 2V_{-25}^4 = -24$ G $V_{+1}^2 + 2V_{-25}^4 = -24$	3 E 06		1
$E[p_{+1}V_{+1}_{+1}_{+2}G]$ $p_{+1}V_{+1}_{+1}_{+2}$	3 E 06		1
$\mathbf{E} \left[\mathbf{p}_{+1} \mathbf{V}_{+1} +_{2} \mathbf{p}_{-15}{14} \mathbf{V}_{-15}{14} \mathbf{j} \mathbf{G} \right]$ $\mathbf{p}_{+1} \mathbf{V}_{+1} +_{2} \mathbf{p}_{-15}{14} \mathbf{V}_{-15}{14}$	3 E 06		1
E[p +1V +1 +2p -12 -11V -12 -11 j G] p +1V +1 +2p -12 -11V -12 -11 j G]	3 E 06		1
$E[V_{+1}jG]V_{+1}$	0:000021		1
E V $+1$ V $_{-16}^{-}$ G V $+1$ V $_{-16}^{-}$	0:000021		1
	0:000021 3 E 06		
E $V_{+1}^2V_{-10}^4$ G $V_{+1}^2V_{-10}^2$ E $V_{+1}^2V_{-18}^2$ G $V_{+1}^2V_{-10}^2$	$3\mathbf{E}$ 06 06^{+1} +1		0 t 2 1

E[V ₊₁₊₂ jG] V ₊₁₊	2	0:005914	0:999994
$E[V_{+1} +_2 V_{-16}{15}]G] V_{+1} +_2 V_{-16}{15}$	$V_{+1} + 2V_{-16} - 15$	0:005914	0:999995
$E[V_{+1}_{+1}_{+2}V_{-17}_{-16}]G]$	$V_{+1} + 2V_{-17} - 16$	0:005914	0:6666:0
E V_{+1}^2 + 5 G V_{+1}^2 + 2	- + 2	0:009844	0:999991
$E \ V_{+1}^2 \ _{+2}^2 V_{-10}^2 \ _{-9} \ G$	$V_{+1}^2 + 2V_{-10}^2 - 9$	0:009844	0:6666:0
E $V_{+1}^2 + 2V_{-18}^2 = 17$ G	$V_{+1}^2 + 2V_{-18}^2 - 17$	0:009844	0:999938
$E[V_{+1}jG]V_{+1}$		0:002155	0:999498
E V $_{+1}$ BP $_{-16}^2$ G	$V_{+1}BP_{-16}^2$	0:002155	0:999712
E V $_{+1}$ BP $_{-2}^{2}$ $_{-1}$ G	$V_{+1}BP_{-2}^2$	0:002155	0:993492
E V_{+1}^2 G V_{+1}^2		0:005225	0:999998
$^{1}V_{-10}^{2}$ G	$V^{2}_{+1}V^{2}_{-10}$ -9	0:005225	986666:0
17 G	$V{+1}^2 BP_{-18-17}^2$	0:005225	0:999803
ſ		$\frac{2}{7} = 5.81155$	0:5619

GMM estimates for SVL model for the Natural Gas futures: 09/2001–06/2016

E[V +1 +2 i G] V +1 +2	0:0058	0:00262	0:00262 0:997913
$\mathbf{E}[V_{+1} + 2V_{-16} - 15\mathbf{j}\mathbf{G}] V_{+1} + 2V_{-16} - 15$	_	0:00277	0:997792
$E[V_{+1} +_2 V_{-17}{16}]G]V_{+1} +_2 V_{-17}{16}$		0:0678	0:945947
E V_{+1}^2 + 2 G V_{+1}^2 + 2		0:01107	0:991166
E $V_{+1}^2 + {}_{2}V_{-10}^2 - 9$ G $V_{+1}^2 + {}_{2}V_{-10}^2 - 9$	0:01161	0:0099	0:992101
E $V_{+1}^2 + {}_{2}V_{-18}^2 - {}_{17}$ G $V_{+1}^2 + {}_{2}V_{-18}^2 - {}_{17}$		0:18512	0:853143
$E[p_{+1}V_{+1} + 2jG]$ $p_{+1}V_{+1} + 2$	0:00281	0:00116	0:999072
$E[p_{+1}V_{+1}_{+1}_{+2}p_{-15}_{-14}V_{-15}_{-14}JG]$	0:00281	0:00544	0:995658
p + 1V + 1 + 2p - 15 - 14V - 15 - 14		- - - - - - - - - - - - - - - -	
$E[p_{+1}V_{+1}_{+1}_{+2}p_{-18}_{-17}V_{-18}_{-17}fG]$	0.00281	0.0369	0.9811
p + 1V + 1 + 2p - 18 - 17V - 18 - 17		000	-

22

E[V +1 +2 j G] V +1 +2	0:00061	0:00029	0:999771
$E[V_{+1}_{+1}_{+2}V_{-10}_{-10}_{-9}G]V_{+1}_{+1}_{+2}V_{-10}_{-9}$	0:00061	0:00194	0:998452
E $V_{+1} + 2V_{-18}^3 = -17$ G $V_{+1} + 2V_{-18}^3 = -17$	0:00061	0:00024	0:6666:0
$E V_{+1}^2 +_2 G V_{+1}^2 +_2$	0:00602	0:00574	0:995417
E $V_{+1}^2 + \frac{1}{2}V_{-10}^2 - 9$ G $V_{+1}^2 + \frac{1}{2}V_{-10}^2 - 9$	0:00602	0:14815	0:882232
E $V_{+1}^2 + {}_{2}V_{-25}^4 = {}_{24}$ G $V_{+1}^2 + {}_{2}V_{-25}^4 = {}_{24}$	0:00602	0:01217	0:99029
$E[p_{+1}V_{+1+2}jG]p_{+1}V_{+1+2}$	0:000105	0:00003	926666:0
$E[p_{+1}V_{+1} + 2p_{-15} - 14V_{-15} - 14jG]$	0:000105	0:000015	0:999988
E [P +1 V +1 +2P -12 -11 V -12 -11] G] D +1 V +1 +2 D 12 11 V 12 11	0:000105	0:000264	0:999789
$E[V_{+1}jG]V_{+1}$	0:052523	0:057867	0:953858
E $V_{+1}V_{-6}^{-}$ G $V_{+1}V_{-6}^{-}$ G	0:052523	4:326995	0:000016
$E V_{+1}V_{-2}^4 - 1 G V_{+1}V_{-2}^4 - 1$	0:052523	0:344424	0:730547
$E V^{2}_{+1} G V^{2}_{+1}$	0:00536	0:00157	0:998747
	0:00536	0:00151	0:998795
E $V_{+1}^2V_{-18}$ -17 G $V_{+1}^2V_{-18}$ -17	0:00536	0:00746	0:994051
		$\frac{2}{9} = 6:00869$	0:7390

ď

GMM estimates for SV model for the WTI futures: 09/2001–06/2016

 >				
E[V +1 +2 j G] V +1 +2		0:000451	0:000079	0:000079 0:999937
$E[V_{+1}_{+1}_{+2}V_{-16}_{-15}G]$	$V_{+1} + 2V_{-16} - 15$	0:000451	0:000044	0:999965
$E[V_{+1} +_2 V_{-17}{16}jG]$ $V_{+1} +_2 V_{-17}{16}$	$V_{+1} + 2V_{-17} - 16$	0:000451	0:000586	0:999532
E V 16				

GMIM estimates for SVL model for the WTI futures: 09/2001–06/2016

E [V +1 +2 j G] V +1 +2	0:000451	0:000017	0:000017 0:999987
$E[V_{+1}_{+1}_{+2}V_{-19}_{-19}_{-18}G]$ $V_{+1}_{+1}_{+2}V_{-19}_{-19}_{-18}$	0:000451	0:00002	0:999984
$E[V_{+1}_{+1}_{+2}V_{-17}_{-17}_{-16}]G]V_{+1}_{+1}_{+2}V_{-17}_{-16}$	0:000451	0:000548	0:999563
E $V_{+1}^2 +_2 G V_{+1}^2 +_2$	0:001539	0:000007	0:999994
E $V_{+1}^2 + \frac{1}{2} V_{-10}^2 = 0$ G $V_{+1}^2 + \frac{1}{2} V_{-10}^2 = 0$	0:001539	0:000024	0:999981
E $V_{+1}^2 + \frac{1}{2} V_{-18}^2 = \frac{1}{17}$ G $V_{+1}^2 + \frac{1}{2} V_{-18}^2 = \frac{1}{17}$ (0:001539	0:001058	0:999156
$E[p_{+1}V_{+1+2}jG]$ $p_{+1}V_{+1+2}$	0:000108	0:000000	0:999995
$E[p_{+1}V_{+1} + 2p_{-18} - 17V_{-18} - 17jG]$	0:000108	0:000001	666666:0
	0.000108	0.0000	\$00000.0 F00000.0
p + 1V + 1 + 2p - 16 - 15V - 16 - 15	00000	0.0000.0	0.777723
ſ	2 5	1:37354 0:9272	0:9272