
Learning Experiences on Blockchain Related

Projects

Xuheng Duan

Computer Science Department

Boston College

Supervisor

Lewis Tseng

In partial ful�llment of the requirements for the degree of

Bachelor of Science in Computer Science



Abstract

Today, blockchain technology becomes a hot topic and attracts peo-

ple’s attention worldwide. Initially, blockchain was introduced in 2008

by Satoshi Nakamoto as a secure system for bitcoin. Today, there

are public blockchain projects like Ethereum and Bitcoin that enables

anyone to process secure peer-to-peer transactions. Meanwhile, there

are also private blockchain projects like Hyperledger Fabric[1], which

restricts the participants and realizes secure communications between

corporations.

Throughout the past year, I studied the Hyperledger blockchain system

and encountered numerous di�culties. Moreover, witnessing so many

di�erent sorts of blockchain projects, one would like to understand and

compare di�erent blockchain performance at scale. Thus, I also studied

three di�erent benchmark tools, namely Blockbench[2], Caliper++[3]

and Hyperledger Caliper[4], and focused on the latter two. At last, we

used Mininet[5] to emulate a virtual network and tested the perfor-

mance of Ethereum. Overcoming the struggles, I document my learn-

ing outcomes and share my experience on these open-source projects

with those who would like to engage the �eld of blockchain.



Contents

1 Introduction 1

1.1 Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hyperledger Caliper . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Caliper++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Mininet and Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Hyperledger Fabric 4

2.1 Structure and concepts . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Organization and Peers . . . . . . . . . . . . . . . . . . . . . 4



CONTENTS

References 22

iii



1. Introduction

The thesis includes four di�erent major parts, corresponding to four di�erent sys-

tems: Hyperledger Fabric, Hyperledger Caliper, Caliper++, and Mininet/Ethereum.

In the introduction part, I will brie
y talk about the basic concepts and structures

of the four systems. Then, in the major sections, I included detailed discussion,

some related work, and working notes. Lastly, there is a short summary at the

end of the thesis.

1.1 Hyperledger Fabric

Admittedly, traditional public blockchain systems have proven their utility. How-

ever, many enterprise use cases require a private environment in which the permis-

sionless blockchain project could not provide. For instance, in �nance transactions,

users need to know each other’s identities in order to avoid money laundering or

�nancial fraud. Although many developers adapted earlier public blockchains for

business scenarios, the projects still have some inherent problems. As a solu-

tion, Hyperledger Fabric[6] was designed for enterprise use, combining novel and

unique philosophies. It aims to build a secure network where all participants must

be identi�ed. Older blockchain projects like bitcoin have issues of low transaction

throughput and high latency of transactions because it relies on miners to pack-

age and verify the data. However, Hyperledger Fabric designs orderers to arrange

the transactions, which brings the transaction speed to a new level. Using mod-

ular architecture and smart contracts, Hyperledger Fabric also makes it easy for

participants to customize the network.

1



1.2 Hyperledger Caliper

1.2 Hyperledger Caliper

Hyperledger Caliper[7] is one of the o�cial benchmark frameworks. Treating the

blockchain system as a whole, Caliper can target the SUT(System Under Test)

by user-de�ned chaincodes and integrate the system responses into a meaningful

report. Caliper consists of two important con�guration �les: benchmark �les and

network �les. In a benchmark �le, users can de�ne di�erent parameters they want,

such as transaction numbers and transactions per second. Furthermore, users are

able to customize their own chaincode and plug it in the Caliper, which would be

called later during benchmark phase. On the other hand, Caliper uses a network

con�guration �le to contact the SUT. The network �le usually de�nes the network

topology, nodes’ endpoints, and smart contracts Caliper should deploy or interact

with.

1.3 Caliper++

Although Caliper version 0.2 is powerful, it still has some disadvantages. For in-

stance, it could only perform on local, prede�ned networks. It is also hard to run

on large-scale and distributed networks. In addition, Caliper has a benchmark

client closely connected to Fabric transaction work
ow, so the client would need

to wait for endorsing peers before they validate the responses, which would poten-

tially in
uence the benchmark results. Thus, another development team designed

Caliper++ that extended the functions of the original Caliper. The redesigned

Caliper++ supports additional functionalities for benchmark Kafka-based[8] Fab-

ric network at scale. To be more speci�c, it contains scripts that could generate

con�guration �les for Fabric network topology and brings up a large scale of net-

work across any number of cluster nodes. It successfully solved the problem that

hindered Caliper and brought new ideas to design a distributed benchmark frame-

work.

2



1.4 Mininet and Ethereum

1.4 Mininet and Ethereum

Mininet[9] is a battle-tested software that is widely used in prototyping and evalu-

ating Software-De�ned Networks(SDNs). It has the capability to illustrate realistic

simulation of physical network topology, and it also supports many extensible con-

�gurations. Another world-famous Blockchain project, Ethereum, supports cus-

tomized applications. We deployed Go-Ethereum(Geth) network on the mininet

and raised some meaningful results.

3



2. Hyperledger Fabric

2.1 Structure and concepts

A typical Hyperledger Fabric transaction will undergo the following steps: the



2.1 Structure and concepts

of Hyperledger Fabric. The peers usually are assigned names in the format of

peerX.orgX.example.com, where X is a number. Similar to miners in public

blockchain systems, Hyperledger Fabric uses peer units to accomplish validat-

ing transactions and to commit data to the ledger. Meanwhile, the peers also

run chaincodes(smart contracts), which contain user-de�ned codes, to manage the

assets.

2.1.2 Orderer and Channel

Di�erent from public blockchain systems, Fabric uses orderers to complete con-

sensus work. After peer units have completed validating the transactions, orderers

would receive the endorsed blocks from peers, and then start to reach a consensus.

Eventually, orderer nodes would add the blocks to the ledger, �nishing the entire

process. Peers could update their own data from the world state at other times.

On top of orderers, a network needs multiple channels to operate. Channels give

Hyperledger Fabric the ability to build private communications between desired

organizations while not interfering with the other organizations. As a result, a

channel creates a black box and private ledger for consortiums that are invited to

the channel.

2.1.3 Certi�cate Authority(CA) and Membership Service

Provider (MSP)

CA and MSP are used to verify one’s identity in Hyperledger Fabric. The CA

would issue cryptographic materials for the network components, like orderers,

organizations, and peers. These materials, usually a pair of public and private

keys, would be later used to enroll components’ admin, as well as peers. After the

network generates cryptographic materials, it also needs MSPs to identify which

certi�cates are needed and to issue valid identities for their members. Using the

metaphor I learned before, certi�cates are similar to the credit cards that can tell

whether or not an individual is able to pay(and this is created by the bank, which

is parallel to CA in Hyperledger Fabric), and MSPs are the list of accepted credit

cards that individual can use in a store.

5



2.2 Related Work and Suggestions

2.2 Related Work and Suggestions

To successfully launch a functional Hyperledger Fabric network, one needs to

address several components and set up the running environment correctly: pre-

requisites, crypto materials, channel con�gurations, and chaincode. After we suc-

cessfully install the chaincode on the Fabric network, we could query against our

ledgers and retrieve the data.





2.2 Related Work and Suggestions

Figure 2.4 Create and Join Channel for Hyperledger Fabric ver2.0

In �gure 2.6, we move 10 values from the account a to b, and then we asked the

ledger to see if the �nal result is correct.

Figure 2.5 Install Chaincode for Hyperledger Fabric ver2.0

Figure 2.6 Install Chaincode for Hyperledger Fabric ver2.0

Figure 2.7 Invoke Chaincode for Hyperledger Fabric ver2.0

Following the o�cial guidance is the most straightforward way to start with

Hyperledger Fabric. The o�cial BYFN[10] tutorial explains most of the concepts

8



2.2 Related Work and Suggestions

one needs to know about setting up a functional Hyperledger Fabric network.

However, completing the tutorial does not provide one enough knowledge nor ex-

perience to construct a customized network. Hereby, I will include some di�culties



3. Hyperledger Caliper and

Caliper++

3.1 Structure and concepts

Hyperledger Caliper has three major parts, Workload Module, Benchmark con�gu-

ration �le, and network con�guration �le. Caliper itself does not have any tangible

benchmark implementation. Alternatively, workload modules are responsible for

generating transactions and submits them against the System Under Test (SUT).

These Workload Modules are Node.js codes that utilize outside APIs. Thus, be

careful with the Node.js version when one uses Caliper. The current stable version

should be either Node.js 8 or Node.js 10. Benchmark con�guration �le consists of

detailed information about the benchmarks, like how it should be executed and

what's the desired transaction rate. By default, Hyperledger Caliper contains two

types of benchmark scenarios. One of which mimics the bank environment and

the other one contains various simple and straightforward tests again SUT, like

plain query and open functions. Lastly, network con�guration �les de�ne the SUT

network topology. Since Caliper itself is a benchmark workframe, which does not

generate the SUT itself, it is users' responsibility to construct a functional SUT

with accessible endpoint addresses. Similarly, Caliper itself utilized �les from

BYFN.

When I touched Hyperledger Caliper, it was still on version 0.2 and has little

documentation on distributed benchmarks. Thus, another development team de-

signed Caliper++[3]. Their contributions include the followings: they extended

Hyperledger Caliper by adding support for distributed benchmarking. Further-

more, the development team designed scripts that can start Fabric with varying

10



3.2 Related Work and Notes

sizes and con�gurations. With Caliper++ the team successfully showed that en-

dorsing peers in the Hyperledger Fabric network with Kafka ordering service is

the bottleneck.

Figure 3.1 The architecture of Caliper

3.2 Related Work and Notes

While reproducing the results in Understanding the scalability of Hyperledger Fab-

ric[3



3.2 Related Work and Notes

and thus Docker Swarm was not a viable option to me. But, there could be multiple

ways to build up a cluster for the Hyperledger Fabric network. To establish a

cluster, I chose between Google Cloud Platform and virtual machines as nodes.

After setting up the machines, I need to connect these nodes together, making

sure they could communicate with each other. In my case, I set up two virtual

machines in VirtualBox, with Ubuntu 16.04 LTS. [12] and [13] guided me complete

this task. Meanwhile, users need to emulate the network so that virtual machines

could connect to the internet and receive an external IP address. [14] showed

how to set up network cards. After ensuring that both machines could talk with

each other by Secure Socket Shell(ssh), I used example con�guration �les from

Hyperledger Fabric o�cial site to construct the network. Everything was smooth

and neat until when I tried to adjust the YAML �les into a more complex network

topology. Although articles like [15] and [16] explained how to con�gure one’s

own Hyperledger Fabric network, unfortunately, I could not resolve the problems

I encountered later.

Hyperledger Fabric network needs certi�cates on every host. Therefore, before

using Caliper[4] or Caliper++, users need to assign the Hyperledger Fabric arti-

facts, including certi�cates, crypto information, and other binaries to every host

and under correct paths. Manually allocating these materials is unrealistic, and I

did not �gure out an easy way that could help me to do that. On the other hand,

making sure hosts in the distributed system could contact each other properly is

challenging. Most of the time, connection requests from one host will be denied by

another one due to diverse problems. There is no easy way to solve them, except

by carefully examining the bug and getting help from others.

Figure 3.2 illustrates a typical report generated by Hyperledger Caliper. The

report would express the SUT on the right side of the page, under \System Under

Test" section. In the �gure, I targeted Caliper against Hyperledger Caliper version

1.4.1 and set up the network topology with 2 organizations, one peer each. The

orderer type was solo, and the network was on a single host. Finally, the world

state was maintained by GoLevel Database. On the other hand, the report section



3.2 Related Work and Notes

Figure 3.2 Hyperledger Caliper report

13



4. Ethereum and Mininet

Finally, we did some work on Ethereum and Mininet[9



4.3 Related Work

which are bandwidth, delay, jitter, and network loss.



4.4 Data and Results



4.4 Data and Results

Here the throughput is measured as the number of blocks that are successfully

appended to the main (canonical) chain per second. Latency is measured as the

duration between (i) the time a miner reports it has mined a potential block; and

(ii) the time the miner reports its block has reached the canonical chain. In this

set of experiments, we use a single switch topology.

Figure 4.4 describes the impact of added latency(link latency) on network

latency.

Figure 4.4 Geth Latency vs. Link Latency

Meanwhile, �gure 4.5 presents the throughput under added latency (inside

Mininet) from 30ms to 150ms. The latency between the host and the switch is

called the \added latency" that we use Mininet to simulate. We can see that the

throughput is quite stable with moderate latency. Then we enlarged the added

latency to 500ms and 1000ms. Check �gure 4.6 for more details.

Figure 4.5 Geth Throughput vs. Link Latency

17



4.4 Data and Results

Figure 4.6 Geth Latency vs. Large Link Latency

4.4.2 Di�erent Topology and Network Failures

Other than normal network delay, we also tested the system with various hardware-

level topologies and di�erent failure patterns.

Table 4.1 presents Geth’s latency and throughput numbers in di�erent topology

with 2% and 4% packet loss rate. Each topology has 5 miners with each link

having 500ms delay and 10ms jitter. The FatTree topology has three layers (core,

aggregate, and edge) and one can adjust the number of switches in each layer and

the number of hosts under each edge switch. For links, one can tune the network

delay, jitter, loss, and bandwidth constraint, and for hosts, one can con�gure the

CPU constraint and the maximum number of physical cores to use. Our result

indicate that fat-tree, while su�ering slightly higher latency, is more robust to

network loss. We have not observed similar study and analysis before.

Table 4.1: Geth performance vs. Network Failures

Fat-
Tree
2%loss

Fat-
Tree
4%loss

Linear
2%loss

Linear
4%loss

throughput
(blocks/sec)

0.82 0.8 0.82 0.76

avg. latency
(sec)

9.83 9.69 9.53 9.67

med. la-
tency (sec)

9.29 9.17 8.86 9.17

95th latency
(sec)

15.14 14.93 15.24 14.48

18



4.4 Data and Results

4.4.3 Heterogeneous Machines

Table 4.2 presents Geth’s latency and throughput numbers with heterogeneous

hosts, i.e., each host has a di�erent computation power. In this particular evalu-

ation, we have a Fat-tree topology with 500ms added latency per link, no jitter,

and no package loss. The relative computation power of each host is listed in the

table. The evaluation runs for 3153.27s, and the whole system generates 2023

valid blocks.

Table 4.2: Geth’s performance with heterogeneous machines

Overall host1 host2 host3 host4 host5
relative
comp.
power

1 0.1 0.1 0.27 0.27 0.26

throughput
(blocks/sec)

0.64 0.02 0.01 0.27 0.01 0.33

avg. latency
(sec)

24.23 268.31 330.15 13.35 17.27 10.27

med. la-
tency (sec)

11.16 270.8 332 12.46 18.36 9.66

95th latency
(sec)

28.78 424.79 511.6 22.71 24.03 16.41

4.4.4 Large-scale Test

Finally, we extend our framework on a virtual instance with 96 vCPUs and 360 GB

memory. The network adopts a Fat-Tree topology with 30 hosts, 500 ms added

latency per link, no jitter, and no package loss. Table below presents the result.

As expected, the throughput is similar regardless of the number of hosts due to

the design of PoW protocol with a �xed di�culty. Table 4.3 sh(wit)1(h)-327(a)-326(�xed)-327(d)1(i�cult)27(y)81(.)-435(T)82(able)-326(4a552 )-27(-32hput)-375(i-326(p)-27(erforma17.5166-324.972-327(heterogeneou)1(s)-3:nd)-1(,)-259(w)27(e)-320(ms)end)-2498 w 0 0 m 335.913 0 l S
Q
q
1 0 0 1 1552 13981892 35 108 337.968 Td [(4.4.4)-1121 J 990 l S
Q
0 g 0 G
BT
552 342 16792 572.746 Td [(host1)]TJ
ET
q
1 0 0 1 319.327 568.412 cm
[]0 d 0 68924T
/72.394wpartimem 0 28.892 l S
Q
BT
/F19 11.97(w.039816792 572.746 Td [(host1)]TJ
ET
q
1 0 0 1 319.327 568.412 cm
[]0 d 0367994)/72.394w

host1

Overall



5. Other Errors

Here I include some common errors, as well as some general tips for successors:

� Docker Socket: Sometimes one will get permission denied from Docker dae-

mon socket. This might be caused by various reasons, but highly likely be-

cause of the low level of permission.[20] explained some potential solutions

and sudo chmod 666 /var/run/docker.sock solved my issue.

� Node.js Version: Hyperledger Fabric and Hyperledger Caliper have a re-

stricted requirement for Node.js version. They do not support the latest

version of Node (currently 14.0.0), but only version 8.x.x or 10.x.x. Thus,

check the Node.js version before you start running them.

� Cluster: As mentioned before, Caliper and Caliper++ used Docker Swarm

to set up the cluster. Thus, I would recommend to learn and use swarm in

the �rst place. Otherwise, Kubernetes is also a viable option.

� Bash Script: Hyperledger Fabric includes a heavy amount of scripts. Thus,

learning how to read script �les is also critical. [21] is the bash cheat sheet

I used.

� Research and choose the right tools. I did not do enough study before

deciding which tool to use, and thus wasted a good amount of time switching

from plan to plan. Thus, make a good plan of action is the most important

part of a project.

� Don’t hesitate to ask. It would save me much time if I asked the author

of the paper about the cluster and network earlier. Furthermore, the tech

forum and community provided me a lot of assistance as well.

20



6. Summary

In general, this paper concentrates on the Hyperledger Fabric, Hyperledger Caliper,

Caliper++, as well as Ethereum and mininet. Each part consists of the basic con-

cepts of the system, and the related work. Summarizing the errors I made and

giving out some advices, I hope my thesis provides enough information to those

who wish to enter the �eld of Blockchain, specially Hyperledger Fabric. Mean-

while, realizing my inadequacies in decision making, I also write some general

suggestions to help others to improve.

Foremost, I would like to express my sincere gratitude to my advisor, Prof.

Lewis Tseng, for the support and guide, for his patience, motivation, and en-

couragement. Nevertheless, I would like to thank my fellow, Haochen Pan, and

Yingjian Wu, for their consistent help and assistance.

21



References

[1] T. L. Foundation, Hyperledger fabric, 2020. [Online]. Available: https://
www.hyperledger.org/projects/fabric .

[2] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, \Block-
bench: A framework for analyzing privateblockchains", 2017. doi : http :
//dx.doi.org/10.1145/3035918.3064033 .

[3] N. Q. Minh, D. Loghin, and T. T. A. Dinh, \Understanding the scalability
of hyperledger fabric", 2019. [Online]. Available: https://bcdl.comp.nus.
edu .sg /papers /understanding_ the_scalability_of_hyperledger_
fabric.pdf .

[4] Hyperledger, Measuring blockchain performance with hyperledger caliper,
Mar. 2018. [Online]. Available: https : / /www.hyperledger .org /blog /
2018/03/19/measuring-blockchain-performance-with-hyperledger-
caliper .

[5] Mininet, http://mininet.org/. [Online]. Available: http://mininet.org/ .

[6] Hyperledger fabric: A blockchain platform for the enterprise, Available at
https://hyperledger-fabric.readthedocs.io/en/latest/index.html ,
Lastest Version: 2.1.

[7] Caliper, Mar. 2020. [Online]. Available: https://github.com/hyperledger/
caliper .

[8] J. Kreps, N. Narkhede, J. Rao, et al., \Kafka: A distributed messaging sys-
tem for log processing", 2011, NetDB, Vol. 11, pp. 1{7.

[9]

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://doi.org/http://dx.doi.org/10.1145/3035918.3064033
https://doi.org/http://dx.doi.org/10.1145/3035918.3064033
https://bcdl.comp.nus.edu.sg/papers/understanding_the_scalability_of_hyperledger_fabric.pdf
https://bcdl.comp.nus.edu.sg/papers/understanding_the_scalability_of_hyperledger_fabric.pdf
https://bcdl.comp.nus.edu.sg/papers/understanding_the_scalability_of_hyperledger_fabric.pdf
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-with-hyperledger-caliper
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-with-hyperledger-caliper
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-with-hyperledger-caliper
http://mininet.org/
 https://hyperledger-fabric.readthedocs.io/en/latest/index.html
https://github.com/hyperledger/caliper
https://github.com/hyperledger/caliper
http://mininet.org/
https://hyperledger-fabric.readthedocs.io/en/latest/build_network.html?highlight=byfn
https://hyperledger-fabric.readthedocs.io/en/latest/build_network.html?highlight=byfn
https://hyperledger-fabric.readthedocs.io/en/latest/build_network.html?highlight=byfn
 https://docs.docker.com/
https://code-maven.com/virtualbox-host-only-network-ssh-to-remote-machine
https://code-maven.com/virtualbox-host-only-network-ssh-to-remote-machine
https://code-maven.com/setup-2-ubuntu-boxes-in-virtualbox-to-communicate-with-each-othere
https://code-maven.com/setup-2-ubuntu-boxes-in-virtualbox-to-communicate-with-each-othere


REFERENCES

[14] B. Linkletter, How to emulate a network using virtualbox, Jan. 2017. [On-
line]. Available: https : / / www . brianlinkletter . com / how - to - use -


