
Examining the Structure of Convolutional
Neural Networks

Serge Aleshin-Guendel

Computer Science Honors Thesis
Boston College

Advised by
Professor Sergio Alvarez

May 10, 2017

1 Introduction

1.1 Overview: What is Machine Learning?

The �eld of machine learning is broadly concerned with the task of creating models and algorithms
that \learn" from data. A somewhat naive, but convenient, way to divide the �eld of machine learn-
ing is between unsupervised and supervised learning (there are many other sub�elds in between and
outside of this dichotomy, but they’re outside the scope of this thesis). In the sub�eld of unsuper-
vised learning you’re given some input data and are tasked with �nding some underlying structure
in the data. This description is intentionally vague, as there’s usually no good way to evaluate these
methods given that there’s no output data (and there lies some of its extreme di�culty!). In the
sub�eld of supervised learning however, along with input data, you’re also given associated output
data. The task here is to �nd some \mapping" from the input to the output.

This thesis will be concerned with the task of supervised learning, and in particular image
classi�cation, where given an image your goal is to give it some basic label. For example, the
CIFAR-10 data set [1] consists of 60; 000 images with 10 basic labels: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck.

Figure 1: Example images from the CIFAR-10 data set [1]

We’d like to build some model so that if it sees any of these images, it’ll be able to assign it the
correct label. In order to build this model, we’re going to need to show our model all of these images
so that it can learn from them (in what’s called the training process).

However, we’d further like to show this model a picture it hasn’t seen before, and we’d once
again like it to output the correct label (which would be supplied along with the unseen image). For

3

example, say we have an image of a cat such as the one right here, appropriately labeled \cat", that

we wish to compute

hmin = arg min
h2H

R(h) = arg min
h2H

1

N

NX

i =1

L(h(xi); yi):

The output of this minimization, which we’ll call the training process (hence the name training set),
is considered to be our best hypothesis which we then use as our �nal model. But how exactly
do we even go about performing this process? Well that depends on your model choice (i.e. what
hypothesis space did you use), and there may still be many ways to either exactly or approximately
minimize the empirical risk.

This then raises the question of: what is a good model? Just because we found the hypothesis
hmin 2 H that minimized our loss function, did we really �nd the best model? One way to view
this question is through the lens of generalization. One way to tell how good or bad our model was
by comparing f(x) to hmin (x) for every x 2 X . However, we don’t have access to the underlying
input space or function. As a proxy to f and access to the underlying input space, we use a
separate data set, unseen to the model during the training process. We’ll deem this set the test set,
Dtest = f(xtest

i ; ytest
i)gN test

i =1 . The goal now isn’t strictly to �nd the hmin de�ned as above. Instead,

there is no closed form solution. Thus we need to resort to an optimization algorithm called gradient
descent [3].

The idea behind gradient descent is that we can think of empirical risk as a function of a d+ 1-
dimensional surface parameterized by our weights, and on this surface we’re trying to �nd the lowest
point, the minimal empirical risk. From calculus, we know that the direction of steepest descent from
a given point w in our weight space is given by �rR(w), or the negative gradient of our empirical
risk at the given point. If we start at a random point in our weight space, and iteratively shift this
weight by some fraction of �rR(w), we’re guaranteed to eventually reach a local minimum (if our
fraction is suitably chosen). This fraction of the gradient is referred to as the learning rate. This
gives rise to the algorithm known as gradient descent.

Figure 3: A visualization of a 2 dimensional weight surface, where E[w] is the empirical risk for a
given point in weight space [4]

Algorithm 1 Gradient Descent

Precondition: Function f(w) of our weights (representing the empirical risk for logistic regression
in this example for a given weight con�guration), learning rate �
Initialize weights to some random wcurrent

1: while not converged do
2: g �rf(wcurrent)
3: wcurrent wcurrent + �g
4: end while
5: return wcurrent

7

2 Neural networks

2.1 The Perceptron

Neural networks and the �eld of deep learning started out of a (very) rough model of how the brain
works [4]. The idea is that functions of the brain are carried out by composition of a large amount
of neurons and synapses. In order to understand large neural networks, it helps to �rst start with
their simplest form, a perceptron, which represents as single neuron.

Consider the same data set up as in logistic regression, In particular, consider an input space of
X = Rd and an output space of Y = f�1; 1g (we’ve changed 0 to �1 for notational convenience).
Then for the perceptron, the set of hypothesis functions is of the form

H =

(

h(x1; � � � ; xd) = sgn(w0 + x1w1 + � � �+ xdwd) = sgn

w0 +

dX

i =1

xiwi

! �
�
�
�w0; � � � ; wd 2 R

)

;

where the sign function is given by

sgn(x) =

(
1 x > 0

�1 x � 0 :

Thus our hypothesis functions predict an input to be 1 if their linear combination with the given
weights is greater than 0, and �1 otherwise. Note that again, as in the case for logistic regression,
the hypothesis space is roughly equivalent to that of linear regression. This stems from the fact
that all three methods can only represent linear hypotheses. This is straight forward in the case of
linear regression (after all linear is in the name, and we choose it so that we’re essentially just line
�tting). However, in the classi�cation settings of logistic regression and the perceptron, this means
that we can only correctly classify an entire data set if there exists a linear boundary between the
two classes! This will motivate the generalization of the perceptron, the multilayer perceptron.

Figure 4: A graphical representation of a perceptron [4]

regression. Note that in this case, we require d‘ to be equal to the number of classes. Let z be a d‘
length vector. Then the ith , for i 2 f1; � � � ; d‘ g, component of the softmax function is given by

f(z)i =
ezi

P d`
j =1 e

zj
:

Note that if we didn’t threshold any of the perceptrons in our network, we’d still only have a
linear function of our data at the end of the network, and thus another linear hypothesis. By adding
non-linear thresholds into our network, we allow our network to represent non-linear hypotheses.
Indeed, it can be shown that a one layer network with sigmoid thresholds can arbitrarily approximate
any decision region [8].

Much like the case for linear and logistic regression, depending on the task, we need di�erent error

features rather than the raw pixels. The MLP sidesteps this laborious process through automatically
extracting features!

2.4 Convolutional Neural Networks

Almost 20 years ago, convolutional neural networks (CNNs) were introduced as a variant of vanilla
MLPs modeled after the visual cortex of animals [11]. The general motivation was that the visual
cortex in mammals consists of layers of simple cells and complex cells, and as an image is being
processed through the cortex, progressively richer features of the image are detected [12]. Appropri-
ately, CNNs, as we’ll see, consist of stacks of convolutional layers (simple cells) and pooling layers
(complex cells) and have been shown to learn progressively higher-level features in the form of �lters
in convolutional layers [2]. CNNs are particularly well suited for handling grid-like data where the
data’s structure contains information, such as audio signals in 1D, images in 2D, and videos in 3D.
In many machine learning models, such as vanilla MLPs, when handling data with structure, in
order to learn based on the given data we’re forced to vectorize our data, making it into a single
vector (rather than a matrix or some other structure). Taking into account that structure is thought
to help improve the performance of models.

In order to describe what a CNN is, it helps to �rst examine what a single layer of a CNN looks
like. In general, each layer of a CNN consists of a set of learnable \�lters" (which are the weights

with a patch of an image

I =

2

4
1 1 1
0 1 1
0 0 1

3

5

Figure 10: The top image shows sparse connections, in comparison to the fully connected bottom
image [16]

generalize from data, we must bias the hypothesis space we’re considering. The speci�c bias one
bakes into a model is called the inductive bias. There’s inductive bias in every machine learning
model! In the case of linear and logistic regression and the perceptron, our inductive bias was that
we could represent the desired task in the form of a linear combination of the data. It’s not so clear
what the inductive bias of an MLP is, since it can approximate nearly any function arbitrarily well.
In [4] it’s described as \smooth interpolation between data points".

A common idea as to why CNNs work so well in practice for images and similarly structured
data is that the inductive bias of the networks restricts us to a class of hypotheses that work well

3 Training Neural Networks in Practice

3.1 Practical Considerations

In order to succeed in training neural nets in practice, there are many di�erent design choices that
need to be taken into account. These include but are not limited to architecture choices (number of
layers, size of each layer, etc.), initialization choices, training algorithms (mostly variants of gradient
descent), hyperparameters for your training algorithms, and regularization choices. We’ll consider a
few of these in this section.

3.1.1 Initialization

A good initialization scheme is important in training neural networks, as it can potentially speed up
the training process or allow the algorithm used during training to �nd a better network con�guration
(among other bene�ts) [10]. We can’t initialize all of the weights in our network to the same value,
like 0 or 1, as this would make all of the weights receive the same updates during the training process.
What we’d like is to initialize the weights to small, random, non-zero values. The \best" choice of
random initialization for a given network is largely based on the choice of threshold function. The
most common initialization while using ReLU activations, is the He initialization [17], which says
that weights should be initialized using a normal distribution with mean 0 and variance 2=fanin
(i.e. N (0; 2=fanin)), where fanin is the number of incoming connections to a neuron.

3.1.2 Data Splitting and Early Stopping

In nearly all applications of machine learning today, you won’t train your models on all of your data.
Instead you’ll use a \train-test split" of the data (alluded to earlier in the introduction to supervised
learning). Some large portion of the data (usually around 80%) is exclusively used to train your
model. The remaining portion (usually around 20%) is used as test data to evaluate the model (it’s
important here to note that the test data is never used as part of the training process). In other
settings, perhaps when performing cross validation or some form of hyperparameter tuning, it might
make sense to split the data into three di�erent sets instead, so that you train on one set, you use
another portion as pseudo-test data to get an idea of how well your model is generalizing during
training (while using this information to in
uence your training), and you use the �nal set as your
actual test data.

One setting where a three way split makes sense is early stopping [18]. When training neural
networks, and machine learning models in general, it’s common to run into a situation, as illustrated
in the �gure below, where even though your performance is improving on your training data, it
stops improving for your test data. This is known as over�tting [4]. In the setup of early stopping,
we use a three way split of the data. The model is trained using the training set. The pseudo-test
set is used to monitor the generalization performance of the model. When our model’s accuracy
doesn’t improve on this pseudo-test set for a certain amount of training steps, or if the accuracy
doesn’t improve by some speci�ed amount, we stop training. The model is then evaluated on the
test set. This serves as a form of regularization, or a form of biasing our model in favor of improving
generalization (and thus reducing over�tting).

3.1.3 Stochastic Gradient Descent

One of the most important practical considerations for training neural networks is using stochastic

Figure 11: Over�tting and the role of early stopping [19]

algorithm as vanilla gradient descent except for one key di�erence: instead of updating the weights
after each pass over the data set, we update the weights after seeing a certain mini-batch (i.e.
some subset) of the data set (SGD technically refers to the case of a mini batch of size 1, while
stochastic mini-batch gradient descent refers to any mini-batch size). This way, we make multiple
weights updates per pass over the data set, instead of just one, and these weight updates serve as
a noisy/stochastic approximation of the true gradient of our empirical risk over the entire data set.
This allows for faster convergence in practice on larger data sets.

3.2 Modern Frameworks

If you want to train a small MLP on a small amount of data, there are many general machine
learning frameworks out there which have MLPs as a built in model. While these frameworks aren’t
going to be optimized speci�cally for MLPs, they can be a decent way to start playing around with
them. One widely use machine learning framework which you can train MLPs in, along with most
other standard machine learning models, is Sci-kit Learn [20].

When one wants to experiment with di�erent network architectures, training algorithms, or take
advantage of optimized software that will let you train large networks with lots of data, you need a
framework built speci�cally for neural networks. The two most common frameworks are currently
Theano and Tensor
ow [21][22].

Keras is a high level wrapper for both Theano and Tensor
ow, which allows you to get o� the
ground quickly with neural networks [23]. The experiments performed for the purpose of this thesis
were carried out in Keras, and so I’ll follow now with two examples, training a vanilla MLP, and

model.add(Dense(9, init='he_normal', input_shape=(d,)))
#Add a ReLU activation after the first layer
model.add(Activation('relu'))
#Add in our second hidden layer, consisting of 9 neurons
model.add(Dense(9, init='he_normal'))
#Add in another ReLU activation
model.add(Activation('relu'))
#Add in our third hidden layer, consisting of 9 neurons
model.add(Dense(9, init='he_normal'))
#Add in another ReLU activation
model.add(Activation('relu'))
#Add in our output layer of size n
model.add(Dense(n))
#Add in a softmax activation
model.add(Activation('softmax'))

We then need to train our MLP on some data, which we’ll call X train and Y train . We’ll
use the categorical cross entropy error func 0 Tdl

model.add(Flatten())
#Add in a fully connected layer of 250 neurons
model.add(Dense(250))
#Add in our output layer of size n
model.add(Dense(n))
#Add in a softmax activation
model.add(Activation('softmax'))

4 Examining CNN Architectures

While CNNs have been massively successful in image classi�cation and many other similar tasks,
there’s no underlying theory as to why they actually work so well in practice. There are lots of
intuitions as to why they work well, but there’s largely only empirical evidence to back these up.
One of the main ways in which CNNs aren’t well understood is their architectures. Building a CNN
requires making a number of design choices, including but not limited to the number of convolutional
layers, the number of �lters in the convolutional layers, the stride at which to apply �lters, and the
size and arrangement of �lters in each convolutional layers. These can roughly be considered the core
components of the architecture of a CNN. There’s also a myriad of other design choices that can be
made that go outside of the typical convolution, threshold, pool architecture, such as whether to use
residual connections [24], whether to use some modi�ed form of convolutions like dilated convolutions
[25], whether to use a di�erent pooling scheme than max pooling [26][27], or even whether to use
pooling at all [28]. And then there are further regularization strategies such as drop out [29] or
batch normalization [30]. Choosing the \best" CNN in practice comes down to experimenting with
lots of these design choices and seeing which performs best for the task at hand.

It’s clear from the highly parametric nature of CNN architectures that it’s more than likely futile
to try to understand some general theory of how to \best" build them by taking into account all
of these choices. Instead, it seems more worthwhile to examine some speci�c structural choice in
detail, and then see if we can discover some phenomenon that can be generalized to other structural
choices.

To this e�ect, I examined three structural choices. The �rst is the idea of a so called \convo-
lutional bottlenecking", where we replace large �lters with stacks of smaller �lters with the same
receptive �eld, the second is the idea of the receptive �eld of the a network, and the third is the
idea of the width of the network. In discussing the three structural choices, it helps to �rst discuss
receptive �elds, as bottlenecking builds on this notion. The width of a network is separate from
these other notions, so will be discussed last. In the following chapter I’ll detail my experiments
with these choices.

4.1 Receptive and E�ective Receptive Fields

The receptive �eld (RF) of a �lter in a CNN is the dimension of the patch of the image (or feature
map if it’s not in the �rst layer) it operates on, e.g. the RF of a 3 � 3 �lter is 3 � 3, the RF of a
5� 5 �lter is 5� 5, and the RF of a 7� 7 �lter is 7� 7. We can generalize this notion of a receptive
�eld of a �lter to the receptive �eld of a layer of a CNN, or to the receptive �eld of an entire CNN.
We refer to this general notion of the receptive �eld as the e�ective receptive �eld (ERF). When

our layer is f , it follows that the max pooling only increases f by 1 (this can be seen with a similar
argument as in the last section).

From here, we can de�ne rf(‘;f) recursively, in terms of rf(‘�1;f) and rf(1;f) for ‘ > 1. Namely,

rf(‘;f) = (rf(1;f) � 2) + (2rf(‘�1;f)):

This can be motivated by the fact that if we know the ERF for a ‘� 1 layer network, we can work
backwards from rf(‘�1;f) to get rf(‘;f) by noting that the pooling operation doubles rf(‘�1;f), and
the �lter convolutions add rf(1;f) � 2 to get the �nal ERF. To see this, suppose we have a network
with f = 5 and ‘ = 2, so we’re adding a layer to the example from the last section. This is roughly
sketched out in the �gure below, which needs some explanation. Since we already know the ERF of
a f = 5, ‘ = 1 network is 6� 6, we can see that a node in the �nal feature map has an ERF of 6� 6
in the feature map following the �rst layer (represented by the red boxes). Each box in that feature
map comes from a max pooling operation in the previous intermediate feature map (represented by
the black and yellow outlined boxes), and thus we see our single output node has an ERF of 12� 12
(this is where the 2rf(‘�1;f) factor comes from) in this intermediate feature map (i.e. the feature
map after the �rst layer of �lters). Each box in the 2 � 2 patch that the pooling operation acted
on then comes from a f = 5 patch in the input image (represented by the blue and green shaded
boxes). Since these blue and green boxes delimit the ERF of the node in the �nal feature map, we
see that the �nal ERF of this network is 16� 16 (this is where the rf(1;f) � 2 factor comes from).

Figure 14: A visual representation of �nding the ERF for an arbitrary network

It’d be nice to then have a closed form expression for rf(‘;f) (even though most of our calculations
will be for shallow networks where this recursive de�nition is enough). I claim that

rf(‘;f) = 1 + f

‘�1X

i =0

2i = 1 + f(2‘ � 1)

21

(which holds for ‘ = 1), which can be shown through induction. The base case is simple, as
1+f(2‘ �1) = 1+f = rf(1;f). For the inductive step, suppose ‘ > 1 and rf(‘�1;f) = 1+f(2‘�1�1).
Then using the recursive de�nition, we have as desired

rf(‘;f) = (rf(1;f) � 2) + (2rf(‘�1;f))

= (f � 1) + (2(1 + f(2‘�1 � 1)))

= f � 1 + 2 + 2f(2‘�1 � 1)

= f + 1 + f2‘ � 2f

= 1 + f(2‘ � 1):

Thus we can easily �nd the ERF of any network that �ts within our assumptions. The table below
calculates the ERF for several architectures which we consider in our experiments (the top row
denotes the receptive �eld of the �lters in each layer, the left most column denotes the number of
layers in the network).

‘nf 3 5 7
1 4 6 8
2 10 16 22
3 22 36 50
4 46 76 96

Figure 15: ERFs for given ‘; f combinations

The idea of the e�ective receptive �eld is important as it’s one rough way of encoding the
representational power of our network. It’s not clear whether there’s a direct relationship between
either the ERF, or some combination of ERF and other structural information, which can guide us
in �nding a CNN with good generalization performance.

4.2 Bottlenecking

One of the recent architectural techniques used in CNNs has been a so called \convolutional bottle-
necking," in which large �lters in the convolutional layers are replaced with stacks of smaller �lters
with the same ERF [24][31][32]. This was hinted at in our ERF calculations, as we saw that the
ERF of a stack of two 3� 3 �lters is 5� 5. Knowing this fact about the ERF, we can treat a stack
of two 3 � 3 �lters as roughly equivalent to one 5 � 5 �lter. We can similarly show that a stack of
three 3 � 3 �lters is roughly equivalent to one 7 � 7 �lter, and so on. This can also be generalized
to incorporate 1� 1 convolutions.

The justi�cation for this practice so far has been that it reduces computation and the number
of parameters, while maintaining the same ERF [14][32]. However, none of the studies which used
bottlenecking examined systematically the e�ect of the technique on the generalization performance
of CNNs. This question goes hand in hand with the question of whether the ERF can guide us to
�nding a CNN structure which generalizes well. I.e. if we’re keeping the ERF of the network the
same, should we expect a change in generalization performance when bottlenecking it?

4.3 Wide Networks

When talking about the width of a network, we simply mean the number of �lters in each layer
of the network (if we have a stack fo �lters, we’re not referring to the total number of �lters in

22

5 Examining CNN Architectures: Experiments

In experimenting with the structural choices discussed in the last chapter (bottlenecking, ERF,
and width), we progressed as follows. We started by examining whether bottlenecking various
networks with layers of 5� 5 or 7� 7 size �lters aided generalization. We found that generalization
accuracy wasn’t a�ected by the bottlenecking. We posited that this was because the ERFs of the
networks were maintained through the bottlenecking, so we began looking at di�erent structural
choices that are used to increase ERFs in networks (mainly strided convolutions, max pooling, and
dilated convolutions), rather than keep them the same (bottlenecking). In this way we were looking
at ERF explicitly as a potential way to increase generalization. We found max pooling to be the
most e�ective choice with respect to increasing generalization accuracy, so we decided to stick to
the convolution, threshold, pool architecture. We further decided to examine the interplay of width,
depth, and ERF of a network. In this chapter I describe these experiments in detail.

The experiments in this chapter were all carried out on the CIFAR-10 data set [1]. All exper-

rf(1;5) = 6 Test Acc.
33P 0.61
5P 0.60

rf(2;5) = 16 Test Acc.
33P33P 0.67
33P5P 0.69
5P33P 0.66
5P5P 0.67

rf(3;5) = 36 Test Acc.
33P33P33P 0.69
33P33P5P 0.68
33P5P33P 0.70
33P5P5P 0.71
5P33P33P 0.67
5P33P5P 0.66
5P5P33P 0.69
5P5P5P 0.70

rf(4;5) = 76 Test Acc.
33P33P33P33P 0.64
33P33P33P5P 0.67
33P33P5P33P 0.69
33P33P5P5P 0.65
33P5P33P33P 0.69
33P5P33P5P 0.69
33P5P5P33P 0.71
33P5P5P5P 0.70
5P33P33P33P 0.67
5P33P33P5P 0.62
5P33P5P33P 0.63
5P33P5P5P 0.64
5P5P33P33P 0.69
5P5P33P5P 0.67
5P5P5P33P 0.68
5P5P5P5P 0.69

Figure 16: Results of Bottleneck Experiments for 5� 5 networks

rf(1;7) = 8 Test Acc.
333P 0.61
7P 0.60

rf(2;7) = 22 Test Acc.
333P333P 0.66
333P7P 0.68
7P333P 0.63
7P7P 0.65

rf(3;7) = 50 Test Acc.
333P333P333P 0.66
333P333P7P 0.64
333P7P333P 0.70
333P7P7P 0.68
7P333P333P 0.65
7P333P7P 0.64
7P7P333P 0.68
7P7P7P 0.66

rf(4;7) = 96 Test Acc.
333P333P333P333P 0.10
333P333P333P7P 0.55
333P333P7P333P 0.65
333P333P7P7P 0.63
333P7P333P333P 0.10
333P7P333P7P 0.63
333P7P7P333P 0.66
333P7P7P7P 0.66
7P333P333P333P 0.10
7P333P333P7P 0.57
7P333P7P333P 0.10
7P333P7P7P 0.61
7P7P333P333P 0.64
7P7P333P7P 0.63
7P7P7P333P 0.62
7P7P7P7P 0.66

Figure 17: Results of Bottleneck Experiments for 7� 7 networks

25

network with same padding a�ected generalization accuracy (both operations increasing the ERF
faster than an all convolutional network). We found that both pooling and strided convolutions in-
creased generalization accuracy, but pooling increased it more. We also found a similar phenomenon
of increasing layers helping generalization accuracy to a point.

We chose to examine pooling networks in greater detail (and in a more principled manner), due
to the results from this section looking promising. These experiments are the subject of the following
section.

5.3 Width, Depth, and ERF Experiments

Our goal in this set of experiments was to explore whether we could �nd a relationship between
width, depth, ERF, and generalization accuracy. In particular, we consider networks with f = 3
(speci�cally one 3 �

Figure 18: Visualization of width, depth, and ERF experiment results

network that we’re able to train for a speci�c ‘; f con�guration (where the width doesn’t a�ect the
ERF). We searched for this breaking point in the f = 3 networks (we didn’t have enough time to
�nd it in the f = 5; 7 networks), but couldn’t �nd a clear relationship between the ERF of a network
and its breaking point. It does look like, however, that deeper networks have a larger breaking point.

We don’t have a good answer as to what causes the breaking point of a network. Our basic idea
is that it has something to do with the network complexity, which is hard to quantify (part of what
we were trying to do with the ERF). It could possibly be the case that shallower networks with
large widths might introduce poorer local minima into the the weight space of the network, causing
the networks to get stuck during training. Finding the cause of this breaking point is left as further
research.

27

6 Conclusions

In this thesis we provided a brief introduction to supervised learning, multilayer perceptrons, and
convolutional neural networks. We then introduced some speci�c structural techniques used in
building convolutional neural networks, and one way to try to capture the representational power of
a network (the e�ective receptive �eld). The results of experiments that examined these structural
techniques were then detailed. Although we couldn’t meet our lofty goal of completely understanding
the structural techniques, we did �nd a property of networks we examined in the \breaking point"
of the networks, namely, the value of network width at which further increases no longer improve
generalization performance. This looks to be an interesting avenue for future research.

28

References

[1] Krizhevsky, Alex, and Geo�rey Hinton. \Learning multiple layers of features from tiny images." Unpublished
(2009).

[2] LeCun, Yann, Yoshua Bengio, and Geo�rey Hinton. \Deep learning." Nature 521.7553 (2015): 436-444.

[3] Bottou, Lon. \Large-scale machine learning with stochastic gradient descent." Proceedings of COMPSTAT'2010.
Physica-Verlag HD, (2010). 177-186.

[4] Mitchell, Tom M. Machine learning. McGraw-Hill, Inc., (1997).

[5] Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data. Vol. 4. New York, NY,
USA:: AMLBook, 2012.

[6] Michael A. Nielsen. Neural Networks and Deep Learning . Determination Press, 2015.

[7] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. \Deep Sparse Recti�er Neural Networks." AISTATS. Vol.
15. No. 106. 2011.

[8] Cybenko, George. \Approximation by superpositions of a sigmoidal function." Mathematics of Control, Signals,
and Systems (MCSS) 2.4 (1989): 303-314.

[9] Rumelhart, David E., Geo�rey E. Hinton, and Ronald J. Williams. \Learning representations by back-propagating
errors." Cognitive modeling 5.3 (1988): 1.

[10] Bishop, Christopher M. Neural networks for pattern recognition. Oxford University Press, (1995).

[11] LeCun, Yann, et al. \Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11
(1998): 2278-2324.

[12] Hubel, David H., and Torsten N. Wiesel.\Receptive �elds and functional architecture of monkey striate cortex."
The Journal of Physiology

[25] Yu, Fisher, and Vladlen Koltun. \Multi-scale context aggregation by dilated convolutions." arXiv preprint
arXiv:1511.07122 (2015).

[26] Graham, Benjamin. \Fractional max-pooling." arXiv preprint arXiv:1412.6071 (2014).

[27] Lee, Chen-Yu, Patrick W. Gallagher, and Zhuowen Tu. \Generalizing pooling functions in convolutional neural
networks: Mixed, gated, and tree." International Conference on Arti�cial Intelligence and Statistics. 2016.

[28] Springenberg, Jost Tobias, et al. \Striving for simplicity: The all convolutional net." arXiv preprint
arXiv:1412.6806 (2014).

[29] Srivastava, Nitish, et al. \Dropout: a simple way to prevent neural networks from over�tting." Journal of Machine
Learning Research 15.1 (2014): 1929-1958.

[30] Io�e, Sergey, and Christian Szegedy. \Batch normalization: Accelerating deep network training by reducing
internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).

[31] Lin, Min, Qiang Chen, and Shuicheng Yan. \Network in network." arXiv preprint arXiv:1312.4400 (2013).

[32] Szegedy, Christian, et al. \Rethinking the Inception Architecture for Computer Vision." arXiv preprint
arXiv:1512.00567 (2015).

[33] Zagoruyko, Sergey, and Nikos Komodakis. \Wide residual networks." arXiv preprint arXiv:1605.07146 (2016).

[34] Dumoulin, Vincent, and Francesco Visin. \A guide to convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

[35] Zeiler, Matthew D. \ADADELTA: an adaptive learning rate method." arXiv preprint arXiv:1212.5701 (2012).

30

